摘要
本文旨在研究无界区域上带有乘性噪声的随机反应扩散方程一致吸引子的存在性.首先利用Ornstein-Uhlenbeck过程,将原方程转化为一个非自治随机动力系统.之后,通过对解的一致估计,得到对应随机动力系统一致拉回随机吸收集的存在性.最后,通过渐近尾部估计,来得到解的一致拉回渐近紧性,从而得到一致随机吸引子的存在性.
In this paper,the existence of uniform random attractor has been investigated for stochastic reaction-diffusion equation with multiplicative noise on unbounded domain.Firstly,the original equation has been transformed into a nonautonomous stochastic dynamical system by using the Ornstein-Uhlenbeck process.Then,by uniformly estimating the solutions,the existence of uniform pullback random absorption set for the corresponding stochastic dynamical system has been obtained.Finally,the asymptotic tail estimation is used to obtain the uniformly pullback asymptotic compactness of the solution,and the existence of uniformly random attractors been obtained.
作者
李博文
李晓军
LI Bowen;LI Xiaojun(School of Science, Hohai University, Nanjing 210098, China)
出处
《西南师范大学学报(自然科学版)》
CAS
2022年第5期69-79,共11页
Journal of Southwest China Normal University(Natural Science Edition)
基金
国家自然科学基金项目(11571092).
关键词
随机反应扩散方程
一致随机吸引子
渐近紧性
O-U过程
无界区域
stochastic reaction-diffusion equation
uniform random attractor
asymptotically compact
O-U process
unbounded region