期刊文献+

基于粒子群算法的灌溉水泵系统优化设计与运行 被引量:1

Optimization Design and Operation of Irrigation Water Pump System Based on Particle Swarm Optimization Algorithm
原文传递
导出
摘要 文章提出了一种相对较新的用于灌溉抽水系统优化设计和运行的管理模式。该管理模式利用粒子群优算法化建立并求解了一个两步优化模型。新提出的模型通过对所有可行的泵机组组合进行详尽的枚举搜索后,在所需时间段内处理给定的需求曲线,然后调用粒子群优化算法搜索每个集合的最优解。在优化机组的运行问题后,计算所有机组的运行总成本和初始投资折旧,确定最优的机组组合,并制定相应的运行策略。研究将所提出的模型用于实际泵站系统的设计和运行后,将结果与优化算法的结果进行比较。结果表明,所提出的模式与粒子群优化算法相结合是一种用于实际灌溉泵系统设计和运行的通用管理模型。 A relatively new management model for the optimal design and operation of irrigation pumping system are proposed in this paper. In this management model, a two-step optimization model is established and solved by particle swarm optimization algorithm.The proposed model in the paper deals with the given demand curve in the required time after exhaustive enumeration search of all feasible pump combinations. And then calls the particle swarm optimization algorithm to search for the optimal solution for each set.After optimizing the operating problems of the units, calculate the total operating cost and initial investment determine the optimal unit combination, and formulate the corresponding operation strategy. After the proposed model is applied to the design and operation of a pumping station system, the results are compared with those of the optimization algorithm. The results show that the proposed model combined with particle swarm optimization algorithm is a general management model for practical irrigation pump system design and operation.
作者 江如春 徐俊 于洪亮 JIANG Ruchun;XU Jun;YU Hongliang(Jiangsu Jiangdu Water Conservancy Project Management Office,Yangzhou 225200,China)
出处 《河南水利与南水北调》 2022年第4期49-51,共3页 Henan Water Resources & South-to-North Water Diversion
关键词 泵站 设计与运行 粒子群优化 pumping station design and operation particle swarm optimization
  • 相关文献

参考文献3

二级参考文献35

  • 1龙新平,朱劲木,刘梅清,周龙才.基于性能曲面拟合的泵站优化调度分析[J].水利学报,2004,35(11):27-32. 被引量:25
  • 2Kennedy J, Eberhart R C. Particle swarm optimization[C]. Proc of IEEE Int Conf on Neutral Networks. Perth, 1995: 1942-1948.
  • 3Zhang R, Song S, Wu C. A two-stage hybrid particle swarm optimization algorithm for the stochastic job shop scheduling problem[J]. Knowledge-Based Systems, 2012, 27: 393-406.
  • 4Khare A, Rangnekar S. A review of particle swarm optimization and its applications in Solar Photovoltaic system[J]. Applied Soft Computing, 2013, 13(5): 2997- 3006.
  • 5Mahor A, Prasad V, Rangnekar S. Economic dispatch using particle swarm optimization: A review[J]. Renewable and Sustainable Energy Reviews, 2009, 13(8): 2134-2141.
  • 6Cai Q, Gong M, Ma L, et al. Greedy discrete particle swarm optimization for large-scale social network clustering[J]. Information Sciences, 2014, 316:503-516.
  • 7Han W, Yang P, Ren H, et al. Comparison study of several kinds of inertia weights for PSO[C]. Proc of 2010 IEEE Int Conf on Informatics and Computing. Shanghai, 2010, 1: 280-284.
  • 8Zhan Z H, Zhang J, Li Y, et al. Adaptive particle swarm optimization[J]. IEEE Trans on Systems, Man, and Cybernetics, Part B: Cybernetics, 2009, 39(6): 1362-1381.
  • 9Li C, Yang S, Nguyen T T. A self-learning particle swarm optimizer for global optimization problems[J]. IEEE Trans on Systems, Man, and Cybernetics, Part B: Cybernetics, 2012, 42(3): 627-646.
  • 10Thangaraj R, Pant M, Abraham A, et al. Particle swarm optimization: Hybridization perspectives and experimental illustrations[J]. Applied Mathematics and Computation, 2011, 217(12): 5208-5226.

共引文献62

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部