摘要
为了减少无人机与有人机的频繁交互,本文提出无人-有人机混合主动式交互决策模型方法。首先,采用基于规则的模糊认知图(RBFCM),构建决策任务选择规则库,实现决策任务的快速选择;其次,根据决策任务、无人机状态和当前战场态势,考虑到战场信息的不确定性,构建基于模糊灰色认知图(FGCM)的协同决策需求推理模型;最后,根据协同决策需求程度和有人机(飞行员)的任务负荷水平等信息,采用模糊认知图(FCM)建立交互方式决策模型。其中,在协同决策需求推理模型和交互方式决策模型中引入粒子群算法(PSO)学习模型的权重矩阵,使权重矩阵更加客观。通过仿真试验,验证了无人-有人机混合主动式交互决策模型方法的有效性和可靠性。该模型可以实现从决策任务的快速选择到交互方式的自主决策,为无人-有人机混合主动式交互决策研究提供新思路。
In order to reduce the frequent interaction between UAV and MAV,a hybrid active interactive decision model method of UAV and MAV is proposed.Firstly,the rule-based fuzzy cognitive map(RBFCM)is used to construct the decision task selection rule base to realize the rapid selection of decision tasks.Secondly,according to the decision tasks,UAV status and current battlefield situation,considering the uncertainty of battlefield information,the fuzzy grey cognitive map(FGCM)is constructed.Finally,according to the collaborative decision-making demand degree and the task load level of MAV(pilot),the interactive decision-making model is established by using fuzzy cognitive map(FCM).Among them,particle swarm optimization(PSO)algorithm is introduced into the collaborative decision-making demand reasoning model and interactive decision-making model learns the weight matrix of the model to make the weight matrix more objective.Through simulation experiments,the effectiveness and reliability of the hybrid active interactive decision-making model method of unmanned man-machine are verified.The model can realize the rapid selection of decision-making tasks to autonomous decision-making in interactive mode,which provides a new idea for the research of unmanned-man-machine hybrid active interactive decision-making.
作者
学喆
张岳
陈军
Xue Zhe;Zhang Yue;Chen Jun(Northwestern Polytechnical University,Xi’an 710072,China;Chongqing Institute for Brain and Intelligence,Guangyang Bay Laboratory,Chongqing 400064,China)
出处
《航空科学技术》
2022年第5期44-52,共9页
Aeronautical Science & Technology
基金
航空科学基金(2020Z023053002)。
关键词
混合主动式
人机协同
交互决策
模糊认知图
粒子群算法
mixed-initiative
human-robot cooperation
interaction strategy
fuzzy cognitive map
particle swarm optimization