期刊文献+

一类图存取结构的最优信息率计算

Optimal Information Rate Calculation Based on a Class of Graph Access Structure
下载PDF
导出
摘要 秘密共享为密钥管理提供了一个非常有效的途径,而存取结构的信息率为高效秘密共享方案的设计提供了理论保证。文章利用存取结构与连通图之间的关系,将参与者人数为8的一类存取结构转化为连通图中顶点数为8、边数为9且最大顶点度为3的一类共63种图存取结构,并分别通过分裂构造法、熵方法、顶点度定理、分解构造法、加权分解法对这63种图存取结构的最优信息率的准确值或上下界进行计算,得出其中30种图存取结构最优信息率的准确值和其余33种图存取结构最优信息率的上下界。 Secret sharing provides a very effective way for key management and the information rate of access structure provides a theoretical guarantee for the design of efficient secret sharing scheme.In this paper,by using the relationship between access structure and connected graph,a class of access structure with 8 participants is transformed into a class of 63 graph access structures with 8 vertices,9 edges and a maximum vertex degree of 3.The accurate value or upper and lower bounds of the optimal information rate of these 63 graph access structures are calculated by splitting construction method,entropy method,vertex degree theorem,decomposition construction method and weighted decomposition method.The accurate values of the optimal information rates of 30 graph access structures and the upper and lower bounds of the optimal information rates of the other 33 graph access structures are obtained.
作者 吕凯欣 李志慧 黑吉辽 宋云 LYU Kaixin;LI Zhihui;HEI Jiliao;SONG Yun(School of Mathematics and Statistics,Shaanxi Normal University,Xi’an,710119,China;School of Computer Science,Shaanxi Normal University,Xi’an,710119,China)
出处 《信息网络安全》 CSCD 北大核心 2022年第4期77-85,共9页 Netinfo Security
基金 国家自然科学基金项目[12071271]。
关键词 图存取结构 最优信息率 秘密共享方案 图的分解 graph access structure optimal information rate secret sharin scheme decomposition of graphs
  • 相关文献

参考文献13

二级参考文献83

  • 1陈晓红,王敏丽.关于图的同构判定方法的探讨[J].大学数学,2006,22(2):75-78. 被引量:8
  • 2STINSONDR.密码学原理与实践[M].3版.冯登国,译.北京:电子工业出版社,2009.
  • 3Shamir A.How to share a secret[J].Communications of the ACM, 1979,22(11 ) :612-613.
  • 4Blakley G.Safeguarding cryptographic keys[C]//Proceedings of the National Computer Conference.Berlin:Springer- Verlag, 1979,48: 313-317.
  • 5Benaloh J C, Leichter J.Generalized secret sharing and monotone functions[C]//LNCS 403:Advances in Cryptology- CRYPTO ' 88,1990:27-35.
  • 6Li Zhihui, Xue Ting, Lai Hong.Secret sharing scheme from binary linear codes[J].Information Sciences, 2010, 180:4412-4419.
  • 7Jackson W, Martin K M.Perfect secret sharing schemes on five participants[J].Designs Codes Cryptography, 1996,9: 267-286.
  • 8Van Dijk M.On the information rate of perfect secret sharing schemes[J].Designs Codes Cryptography, 1995,6: 143-169.
  • 9Song Yun, Li Zhihui, Wang Weicong.The information rate of secret sharing schemes on seven participants by con- nected graphs[C]//Lecture Notes in Electrical Engineering, 2012,127: 637-645.
  • 10Capocelli R M, De Santis A, Gargano L, et al.On the size of shares for secret sharing schemes[J].Cryptology, 1993,6: 157-167.

共引文献97

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部