期刊文献+

基于贝叶斯网络的相控阵雷达模糊故障诊断系统设计

Design of Phased Array Radar Fuzzy Fault Diagnosis System Based on Bayesian Networks
下载PDF
导出
摘要 机载有源相控阵雷达由于内部数字化器件集成度高、技术复杂等因素,其BIT测试点设置和设计难度很大,单纯依赖机上BIT进行故障诊断很难准确隔离到单个LRM。该文在分析某型号雷达BIT诊断故障模糊特点的基础上,设计了一种基于贝叶斯网络的故障诊断系统,利用专家知识构建网络结构,通过EM算法确定数据不完备条件下的网络参数,采用联结树算法实现故障诊断推理,从而提高了模糊故障的诊断精度和排查效率。最后,通过实例验证了该系统的有效性和可行性。 Due to high integration and complex technology of the airborne active phased array radar internal digital devices,it is hard to set up and design test points of the radar,relying solely on BIT for fault diagnosis is difficult to accurately isolating to one LRM.After analyzing the fuzzy characteristics of a radar BIT fault diagnosis,the fault diagnosis system based on Bayesian networks is designed,using expert knowledge to construct the structure,determining the parameters under the condition of incomplete data by EM algorithm,realizing fault diagnosis reasoning through junction tree algorithm.The accuracy and efficiency of fuzzy fault diagnosis are improved.Finally,the effectiveness and feasibility of the fault diagnosis system are proved with examples.
作者 郁嵩 Yu Song(Nanjing Research Institute of Electronics Technology,Jiangsu Nanjing 210013)
出处 《电子质量》 2022年第5期195-199,共5页 Electronics Quality
关键词 贝叶斯网络 故障诊断 相控阵雷达 BIT Bayesian networks fault diagnosis phased array radar BIT
  • 相关文献

参考文献4

二级参考文献37

  • 1徐德好,平丽浩.军用航空电子LRM模块结构设计[J].电子机械工程,2001,17(1):16-18. 被引量:12
  • 2霍曼,邓中卫.国外军用飞机航空电子系统发展趋势[J].航空电子技术,2004,35(4):5-10. 被引量:65
  • 3王海波,王旭,侯同刚.空空导弹测试性验证应用研究[J].航空兵器,2005,12(3):40-42. 被引量:5
  • 4冯永新,张嘉钟,夏松波,黄文虎.设备故障基于图论的层次诊断模型研究[J].哈尔滨工业大学学报,1996,28(3):137-143. 被引量:15
  • 5孙大飞,Dempster A P, Laird N M, et al. Maximum likelihood from Incomplete data via the EM algorithm[J ]. Journal of the Royal Statistical Society, Series B, 1997,39(1) :1-38.
  • 6Meng X L, Rubin D B. Recent Extension to the EM algorithm[M]. Bayesian Statistics 4. Oxford: Oxford University Press, 1992: 307 - 320.
  • 7Andrieu C,Doucet A. Online Expection- Maximization Type Algorithms for Parameter Estimation in General State Space Models[C]//in Proc. IEEE Int. Conf. Aooustics, Speech, and Signal Processing. [s. l. ] : [s. n. ] ,2003:69- 72.
  • 8贾沛璋,朱征桃.最优估计及其应用[M].北京:科学出版社,1994.
  • 9Parzen E. On the estimation of a probability density function andmode [ J ]. Annals of Mathematical Statistics, 1962,33 : 1065 - 1076.
  • 10Wang A P, Wang H. Minimising entropy and mean tracking control for affine nonlinear and non - Gaussian dynamic stochastic system[J]. IEE Proceedings Control Theory & Application, 2005,151 (4) : 405 - 520.

共引文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部