期刊文献+

基于DropBlock双模态混合神经网络的无线通信调制识别 被引量:4

DropBlock based bimodal hybrid neural network for wireless communication modulation recognition
下载PDF
导出
摘要 自动调制识别作为信号检测和解调的中间步骤,在无线通信系统中起着至关重要的作用。针对现有自动调制识别方法识别精度低的问题,提出了一种双模态混合神经网络(bimodal hybrid neural network,BHNN),该网络利用多个模态中包含的互补增益信息来丰富特征维度。将改进的残差网络与双向门控循环单元并行连接,构建双模态混合神经网络模型,分别提取信号的空间特征与时序特征。引入DropBlock正则化算法,有效抑制网络训练过程中过拟合、梯度消失和梯度爆炸等对识别精度的影响。以双模态数据输入,充分利用信号的空间与时序特征,通过并行连接减少网络深度,加速模型收敛,提高调制信号的识别精度。为验证模型的有效性,采用两种公开数据集对模型进行仿真实验,结果表明,BHNN在两种数据集上识别精度高、稳定性强,在高信噪比下识别精度分别可达89%和93.63%。 As an intermediate step of signal detection and demodulation, automatic modulation recognition played a momentous role in wireless communication system. Aiming at the low recognition accuracy of existing automatic modulation recognition methods, a bimodal hybrid neural network(BHNN) was proposed, which utilized complementary gain information contained in multiple modes to enrich feature dimensions. The improved residual network was connected in parallel with the bidirectional gated loop unit to construct a bimodal hybrid neural network model,and the spatial and temporal features of the signal were extracted respectively. The DropBlock regularization algorithm was introduced to effectively suppress the influence of over fitting, gradient disappearance and gradient explosion on the recognition accuracy in the process of network training. Using bimodal data input, the spatial and temporal characteristics of signals were fully utilized, and the network depth was reduced through parallel connection.The model convergence was accelerated, and the recognition accuracy of modulated signals was improved. In order to verify the effectiveness of the model, two public datasets were used to simulate the model. The results show that BHNN has high recognition accuracy and strong stability on the two datasets, and the recognition accuracy can reach 89% and 93.63% respectively under high signal-to-noise ratio.
作者 高岩 石坚 马圣雨 马柏林 乐光学 GAO Yan;SHI Jian;MA Shengyu;MA Bolin;YUE Guangxue(College of Computer Science and Technology,Henan Polytechnic University,Jiaozuo 454003,China;College of Information Science and Engineering,Jiaxing University,Jiaxing 314000,China;College of Data Science,Jiaxing University,Jiaxing 314000,China)
出处 《电信科学》 2022年第5期75-86,共12页 Telecommunications Science
基金 国家自然科学基金资助项目(No.U19B2015)。
关键词 调制识别 双模态混合网络 DropBlock正则化 ResNet BiGRU modulation recognition bimodal hybrid neural network DropBlock regularization ResNet BiGRU
  • 相关文献

参考文献2

二级参考文献17

  • 1包锡锐,吴瑛,周欣.基于高阶累积量的数字调制信号识别算法[J].信息工程大学学报,2007,8(4):463-467. 被引量:23
  • 2SWAMI A and SADLER B M. Hierarchical digital modulation classification using cumulants[J]. IEEE Transactions on Communications, 2000, 48(3): 416-429. doi: 10.1109/26.837045.
  • 3SHAKRA Mahmoud M, SHAHEEN Ehab M, BAKR Hossam Abou, et al. C3. Automatic digital modulation recognition of satellite communication signals[C]. 32nd National Satellite Communication Signals, Giza, 2015: 118-126. doi: 10.1109/ NRSC.2015.7117822.
  • 4WANG Lanxun, REN Yujing, and ZHANG Ruihua. Algorithm of digital modulation recognition based on support vector machines[C]. International Conference on Machine Learning and Cybernetics, Baoding, 2009: 980-983. doi: 10.1109/ICMLC.2009.5212366.
  • 5LIU Mingzhu, ZHAO Yue, Shi Lin, et al. Research on recognition algorithm of digital modulation by higher order cumulants[C]. Fourth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC), Harbin, 2014: 686-690. doi: 10.1109/~MCCC.2014.146.
  • 6FEHSKE A, GAEDDERT J, and REED J. A new approach to signal classification using spectral correlation and neural networks[C]. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, Baltimore, MD, 2005: 144-150. doi: 10.1109/DYSPAN. 2005. 1542629.
  • 7HAN Yu, WEI Guohua, SONG Chunyun, et al. Hierarchical digital modulation recognition based on higher-order cumulants[C]. Second International Conference on Instrumentation, Measurement, Computer, Communication and Control (IMCCC), Harbin, 2012: 1645-1648. doi: 10.1109 /IMCCC.2012.398.
  • 8VISAN D A, JURIAN M, LITA I, et al. Modeling and simulation of an recognition system for digital modulated signals[C]. 32nd International Spring Seminar on Electronics Technology(ISSE), Brno, 2009: 1-5. doi: 10.1109/ISSE.2009. 5206992.
  • 9YAJNANARAYANA V and AHMED I Z. Novel method for blind constellation detection using template based classifier for quadrature digital modulation schemes[C]. 10th International Conference on Electronic Measurement & Instruments (ICEMI), Chengdu, 2011: 1-4. doi: 10.1109/ ICEMI.2011.6037934.
  • 10RAMKUMAR B. Automatic modulation classification for cognitive radios using cyclic feature detection[J]. IEEE Circuits and Systems Magazine, 2009, 9(2): 27-45. doi: 10.1109/MCAS.2008.931739.

共引文献85

同被引文献47

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部