期刊文献+

视觉与GPS/IMU融合的智轨电车循迹控制研究 被引量:3

Automatic Tracking Control of Autonomous-rail Rapid Tram Based on Camera Vision, Inertial Measurement Unit and GPS Data
下载PDF
导出
摘要 视觉识别技术易受地面标识污损、强光反射及视场角小等因素影响,而全球定位系统(GPS)则易受遮挡与电磁干扰等因素影响,使用任意单一定位方式均会出现循迹可用性不高的问题。对此,文章提出一种融合视觉与GPS组合惯导的容错控制方法。其首先基于图像识别方法对车道线进行识别,得到车辆与道路的几何关系参数后,设计PID控制器进行转向控制;接着,采用实时动态全球定位系统(RTK-GPS)构建分层电子地图,以输出平滑参考轨迹,进而设计Stanely控制器进行转向控制;最后,对视觉识别技术与GPS循迹控制进行融合。实车试验结果表明,采用所提出的融合控制策略,有效提高了智轨电车小半径转弯通过率,弯道最高通过速度提高了66.7%(可达25 km/h),单程接管次数减少了83.8%,运营时间缩短了24.4%,系统可用性得到有效提升。 Visual recognition is easily affected by broken ground identification, reflection of strong light and narrow field of view, while GPS(global positioning system) location is susceptible to occlusion and electromagnetic interference. Using any single positioning method will cause the problem of low tracking availability. Therefore, a fault-tolerant control method of combined vision and GPS combined inertial navigation is proposed in this paper. Firstly, lane line recognition is carried out based on image recognition method, geometric relationship parameters between vehicle and road are obtained, and PID controller is designed for steering control. Secondly, layered electronic map is constructed by RTK-GPS(real-time kinematic GPS), smooth reference track is output, and then Stanley controller is designed for steering control. Finally, vision and GPS tracking control are fused. Through real vehicle verification, the results show that the proposed fusion control strategy effectively improves the small radius turning passing rate of autonomous-rail rapid tram, the maximum passing speed can reach 25 km/h, which is increased by 66.7%, the number of oneway takeovers is reduced by 83.8%, the operation time is reduced by 24.4%, and the system availability is effectively improved.
作者 袁希文 张新锐 胡云卿 高鑫鹏 黄瑞鹏 YUAN Xiwen;ZHANG Xinrui;HU Yunqing;GAO Xinpeng;HUANG Ruipeng(CRRC Zhuzhou Institute Co.,Ltd.,Zhuzhou,Hunan 412001,China)
出处 《控制与信息技术》 2022年第2期62-68,共7页 CONTROL AND INFORMATION TECHNOLOGY
基金 湖湘青年英才(2020RC3095)。
关键词 智轨电车 自动循迹 视觉 GPS 惯性测量单元 融合控制 autonomous-rail rapid tram automatic tracking vision GPS IMU(inertial measurement unit) fusion control
  • 相关文献

参考文献4

二级参考文献39

  • 1籍颖,刘兆祥,刘刚,张漫,周建军.基于Kalman滤波农用车辆导航定位方法[J].农业机械学报,2009,40(S1):13-17. 被引量:19
  • 2Hofmann U, Rieder A, Dickmanns E D. EMS - Vision:Application to Hybrid Adaptive Cruise Control [J]. Proceedings of the IEEE 2000 Dearborn (MI), USA, 2000:468 -473.
  • 3Massimo Bertozzi, Albert Broggi. Real- Time Lane and Obstacle Detection on the GOLD System [J]. Proceedings of the IEEE Intelligent Vehicles Symposium, 1996:213 - 218.
  • 4http://www, valeoraytheon, com/hazards, html, hccessed Jan. 2007.
  • 5http://www, visteon, com/produets/automotive/driver _ awareness, shtml,accessed Jan. 2007.
  • 6Wu Shunxi,Yang Ming. Landmark Pair- based Localization for Intelligent Vehicles Using Laser Radar [J]. Proceedings of the 2007 IEEE Intelligent Vehicles Symposium Istanbul, Turkey, 2007 : 209 - 214.
  • 7Fadi Fayad, Veronique Cherfaoui. Tracking Objects Using a Laser Scanner in Driving Situation Based on Modeling Target Shape[J]. Proceedings of the 2007 IEEE Intelligent Vehicles Symposium Istanbul, Turkey, 2007 : 44 - 49.
  • 8Stefan Hoch, Manfred Schweigert. The BMW SURF Project:A Contribution to the Research on Cognitive Vehicles [J]. Proceedings of the 2007 IEEE Intelligent Vehicles Symposium Istanbul, Turkey, 2007 : 692 - 697.
  • 9Rosenblum M, Gothard B. A High Fidlity Multi - sensor Scene Unerstanding Systemfor Autonomous Navigation [J]. Proceedings of the IEEE Intelligent Vehicles Symposium,2000,10:637- 6431.
  • 10Jan C Becker, Andreas Simon. Sensor and Navigation Data Fusion for an Autonomous Vehicle [J]. Proceedings of the IEEE Intelligent Vehicles Symposium, 2000, 10. 156 - 1611.

共引文献93

同被引文献13

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部