期刊文献+

基于后结构化电子病历的胰腺癌科研数据平台设计 被引量:1

Design of pancreatic cancer research data platform based on post-structured electronic medical records
下载PDF
导出
摘要 目的:设计一种基于后结构化电子病历的胰腺癌科研数据平台,为胰腺癌科研项目提供数据支持。方法:该平台基于SQL Server 2015数据库,采用浏览器/服务器(Browser/Server,B/S)架构进行设计。采用SQL Server Integration Services 2015工具抽取结构化后的电子病历数据和临床信息系统产生的异构数据;采用SQL Server Reporting Services 2015工具开发浏览器界面,实现数据查询和可视化。整个平台包括数据抽取、数据处理和查询分析3个功能模块。结果:该平台可将散落在各个系统中的非结构化数据和半结构化数据集成到一起,为胰腺癌科研项目提供真实可靠的数据,并能对数据进行管理、统计、筛选和生成各类图表。结论:该平台能基本满足胰腺癌科研工作的需求,为构建类似需求的其他病历研究平台提供了借鉴。 Objective To design a post-structured electronic medical record-based pancreatic cancer research data platform to provide data support for pancreatic cancer research projects.Methods A pancreatic cancer data platform was developed with SQL Server 2015 database and B/S architecture.SQL Server Integration Services 2015 tool was used to extract the structured electronic medical record data and the heterogeneous data generated by the clinical information system;a browser interface was established with SQL Server Reporting Services 2015 tool to realize data query and visualization.The whole platform was composed of three functional modules for data extraction,data processing and query analysis.Results The platform integrated unstructured data and semi-structured data scattered in various systems to provide real and reliable data for pancreatic cancer research projects,which could manage,count,filter and generate various charts for the data.Conclusion The platform developed can approximately meet the needs of pancreatic cancer researches,and references are provided for building other medical record research platforms with similar needs.
作者 万歆 姚晴虹 WAN Xin;YAO Qing-hong(Ruijin Hospital,Shanghai Jiao Tong University School of Medicine,Shanghai 200025,China)
出处 《医疗卫生装备》 CAS 2022年第5期38-43,84,共7页 Chinese Medical Equipment Journal
基金 上海市经济和信息化委员会“智慧瑞金,瑞智助医”医疗人工智能应用场景建设项目(2020-RGZN-02046)。
关键词 后结构化 电子病历 胰腺癌 胰腺癌科研 数据平台 post-structured electronic medical record pancreatic cancer pancreatic cancer research data platform
  • 相关文献

参考文献8

二级参考文献91

  • 1毛利锋,瞿海斌.一种基于决策树的乳腺癌计算机辅助诊断新方法[J].江南大学学报(自然科学版),2004,3(3):227-229. 被引量:8
  • 2王海欢,张小邨.互联网出口带宽管理系统规划与设计[J].视听界(广播电视技术),2012(5):5-9. 被引量:2
  • 3[1]A. McCallum, K. Nigam, J. Rennie, and K. Seymore. A machine learning approach to building Domain-Specific Search Engines [A]. In Proceedings of IJCAI-99 [C]. 622-667.
  • 4[2]Ellien Riloff. Automatically Constructing a Dictionary for Information Extraction Task [A]. Proceeding for the Eleventh National Conference on Artificial Intelligence [C]. 1993. 811-816.
  • 5[3]E. Riloff , R. Jones. Learning Dictionaries for Information Extraction by Multi-Level Bootstrapping [A]. Proceedings of the Sixteenth National Conference on Artificial Intelligence [C]. 1999. 811-816.
  • 6[4]S. Soderland. Learning information extraction rules for semi-structured and free text [J]. Machine Learning, 1999, 1-44.
  • 7[5]Kushmerick, N. Wrapper induction: efficiency and Expressiveness [J]. Artificial Intelligence,2000, Vol. 118, pp. 15--68.
  • 8[6]Leek,T. R. Information Extraction Using Hidden Markov Models [D]. Master's thesis, UC san Diego,1997.
  • 9[7]Kristie Seymore, Andrew McCallum, Ronal Rosenfel. Learning Hidden Markov Model Structure for Information Extract [A]. AAAI' 99 Workshop on Machine Learning for Information Extraction [C]. 1999. 37-42.
  • 10[8]Dayne Frietag, Andrew McCallum. Information Extraction with HMMs and shrinkage [A]. In Proceedings of the AAAI'99 Workshop on Machine Learning for Information Extraction [C], 1999, pp. 31-36.

共引文献174

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部