期刊文献+

基于粒计算的支持向量数据描述分类方法 被引量:2

Granular Computing-Driven Support Vector Data Description Approach to Classification
下载PDF
导出
摘要 分类学习效果与有限训练样本的分布情况密切相关。支持向量数据描述(Support vector data description,SVDD)作为单一边界求解模型,不能良好刻画数据实际分布特征,从而导致部分目标对象落在超球以外。为了提高其分类能力,本文提出一种基于粒计算的支持向量数据描述(Granular computing-driven SVDD,GrC-SVDD)分类方法,构造多粒度层次的属性集合以及相应的多粒度超球。首先通过邻域自信息对当前粒度层的属性集合重要度进行计算,然后选择最佳属性集合对上一粒度层未达到纯度阈值的超球再训练,直到所有超球满足条件或者属性耗尽。实验部分讨论了算法参数对分类性能的影响,并通过学习获得超参数。结果表明,与SVDD及流行的分类算法相比,本文方法具有较好的分类性能。 The effect of classification learning is closely related to the distribution of limited training samples.Support vector data description(SVDD),as a single boundary solution model,cannot well describe the actual distribution characteristics of the data,resulting in some target objects falling outside the hypersphere.To improve its classification ability,this paper proposes a granular computing-driven SVDD(GrC-SVDD)classification method to construct a multi-granularity levels attribute sets and the corresponding multi-granular hyperspheres.Firstly,the importance of the attribute within the current granularity level is calculated through the neighborhood self-information.Secondly,the best attribute set is then chosen to retrain the hyperspheres that did not achieve the purity criterion at the previous granularity level,and so on until all hyperspheres meet the conditions or the attributes are exhausted.The experimental section discusses the effect of parameters on classification performance and learns hyperparameters.The experimental results show that GrC-SVDD has better classification performance compared with SVDD and popular classification methods.
作者 方宇 曹雪梅 杨梅 王轩 闵帆 FANG Yu;CAO Xuemei;YANG Mei;WANG Xuan;MIN Fan(School of Computer Science,Southwest Petroleum University,Chengdu 610500,China;Network and Information Center,Southwest Petroleum University,Chengdu 610500,China)
出处 《数据采集与处理》 CSCD 北大核心 2022年第3期633-642,共10页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(62006200) 四川省青年科技创新团队项目(2019JDTD0017) 西南石油大学研究生全英文课程建设项目(2020QY04)。
关键词 粒计算 支持向量数据描述 超球 邻域自信息 特征选择 granular computing support vector data description hyperspheres neighborhood self-information feature selection
  • 相关文献

参考文献5

二级参考文献26

  • 1胡国胜,钱玲,张国红.支持向量机的多分类算法[J].系统工程与电子技术,2006,28(1):127-132. 被引量:33
  • 2王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264
  • 3白秀玲,王平,普杰信.一种粗糙集值约简算法及其应用[J].微计算机信息,2006,22(11X):207-209. 被引量:15
  • 4苗夺谦.Rough Set理论及其在机器学习中的应用研究[博士学位论文].北京:中国科学院自动化研究所,1997..
  • 5王国胤.Rough集理论和知识获取[M].西安:西安交通大学出版社,2001..
  • 6Vladimir N Vapnik. Nature of Statistical Learning Theory[M]. New York: Springer Verlag,2000.
  • 7David M J Tax. Support vector data description [ J ]. Machine Learning,2004,54:45 - 66.
  • 8Hongliang Jin, Qingshan Liu, Hanqing Lu. Face detection using one-class-based support vectors[A ]. Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition (FGR'04)[C]. Seoul: IEEE Press,2004.
  • 9Scholkopf B. Estimating the support of a high-dimensional distribution[ J ]. Neural Computation, 2001,13 : 1443 - 1471.
  • 10Tao Ban. Implementing multi-class classifiers by one-class classification methods[ A ] .2006 International Joint Conference on Neural Networks [ C ]. Vancouver: IEEE Press, 2006. 327 - 332.

共引文献995

同被引文献17

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部