期刊文献+

基于视频图像的着装规范性识别研究 被引量:1

Research on dress standardization technology based on video image recognition
下载PDF
导出
摘要 为了解决当前着装规范性技术存在的一些问题,减少电力作业安全事故发生概率,提出了基于视频图像的着装规范性识别方法。首先采集电力施工监理视频图像,并对视频图像进行预处理,然后从电力施工监理视频图像提取HOG特征和LBP特征,利用支持向量机算法识别作业人员的着装,最后进行了仿真实验。仿真结果表明,所提方法可以实现高精度的着装识别,实现了工作人员规范穿戴问题的实时跟踪、报警,具有较高的实际应用价值。 In order to solve some problems existing in the current dress code technology and reduce the probability of power operation safety accidents,a method of clothing standardization recognition based on video image is proposed.Firstly,the video image of power construction supervision is collected,and the video image is preprocessed.Then,hog feature and LBP feature are extracted from the video image of power construction supervision.Then,the support vector machine algorithm is used to identify the operator's clothing.Finally,the simulation experiment is carried out.The results show that the proposed method can realize high-precision dress recognition and realize the real-time follow-up of staff's standard wearing tracking and alarming a high practical application value.
作者 施蔚青 刘洪兵 何四平 Shi Weiqing;Liu Hongbing;He Siping(Training and Evaluation Center,Yunnan Power Grid Co.,Ltd.,Yunnan Kunming,650221,China)
出处 《机械设计与制造工程》 2022年第5期121-124,共4页 Machine Design and Manufacturing Engineering
关键词 着装识别 图像识别 方向梯度直方图特征 局部二值模式特征 支持向量机 dress recognition image recognition histogram of oriented gradient feature local binary pattern feature support vector machine
  • 相关文献

参考文献9

二级参考文献76

  • 1Felzenszwalb P F, Huttenlocher D P. Pictorial Structures for Object Recognition. International Journal of Computer Vision, 2005, 61 ( 1 ) : 55-79.
  • 2Moeslund T B, Hilton A, Krilger V, et al. Visual Analysis of Humans. London, UK, Springer-Verlag, 2011.
  • 3Fischler M A, Elschlager R A. The Representation and Matching of Pictorial Structures. IEEE Transactions on Computers, 1973, c-22 ( 1 ) : 67-92.
  • 4Sapp B, Toshev A, Taskar B. Cascaded Models for Articulated Pose Estimation/! Proc of the llth European Conference on Computer Vision. Heraklion, Greece, 2010 : 406-420.
  • 5Johnson S, Everingham M. Combining Discriminative Appearance and Segmentation Cues for Articulated Human Pose Estimation // Proc of the 12th IEEE International Conference on Computer Vision Workshops. Kyoto, Japan, 2009:405-412.
  • 6Ukita N. Articulated Pose Estimation with Parts Connectivity Using Discriminative Local Oriented Contours/! Proc of the IEEE Confer- ence on Computer Vision and Pattern Recognition. Providence, USA, 2012 : 3154-3161.
  • 7Eichner M, Ferrari V. Better Appearance Models for Pictorial Struc- tures//Proc of the 20th British Machine Vision Conference. Lon- don, UK, 2009:3.1-3.11.
  • 8Fen'aft V, Marin-Jimenez M, Zisserman A. Progressive Search Space Reduction for Human Pose Estimation // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Anchor- age, USA, 2008:1-8.
  • 9Dalai N, Triggs B. Histograms of Oriented Gradients for Human Detection // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005 : 886-893.
  • 10Srinivasan P, Shi J B. Bottom-Up Recognition and Parsing of the Human Body//Proe of the IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA, 2007:824-831.

共引文献70

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部