期刊文献+

基于改进深度森林的短期电力负荷预测模型 被引量:3

Short term power load forecasting modelbased on improved deep forest
下载PDF
导出
摘要 深度学习模型通过学习数据的深层特征能够有效提高电力负荷预测的准确率,但同时也带来了超参数较多、模型可解释性差等问题。针对这些问题,文中将深度森林模型引入短期电力负荷预测领域。在多粒度级联森林模型的基础上改进了多粒度窗口扫描方法,调整窗口大小与滑动步长,使模型能够在不同时间尺度下提取电力负荷数据的周期性特征。此外,改进深度森林输出层的计算方法,将输出结果由离散的类向量改进为连续的预测值,进而提高模型的精确度。最后在中国东北电网的实测数据中验证了文中所提出方法的可行性与有效性。从实验结果可知,改进深度森林算法在较高预测精度的情况下能取得更高的准确率,并且相较于深度神经网络具有更快的学习速度。 Deep learning method can help to learn the deep features of power load data and improve the accuracy of prediction,but it also brings problems,such as large amounts of super parameters and poor interpretability of the model.To solve these problems,this paper introduces the deep forest model for short-term load forecasting.Based on the multi-Grained Cascade forest model,the multi-granularity window scanning method is improved with adjusted window size and sliding step size,so that the model can extract the periodicity characteristics of power load data in different time scales.In addition,the calculation method of deep forest output layer is improved with changing the output result from discrete class vector to continuous predicted value,improving the accuracy of the model.Finally,the feasibility and effectiveness of the proposed method are verified with the measured data of northeast China power grid.The experimental results show that the improved deep forest algorithm can achieve higher accuracy with higher prediction accuracy,and has faster learning speed than the deep neural network.
作者 彭飞 马煜 张晓华 吴奕 邓文琛 陈志奎 PENG Fei;MA Yu;ZHANG Xiaohua;WU Yi;DENG Wenchen;CHENG Zhikui(Northeast Branch of State Grid Corporation of China,Shenyang 110180,P.R.China;State Grid Shenyang Electric Power Supply Company,Shenyang 110811,P.R.China;Shenyang Institute of Computing Technology Co.Ltd.,Chinese Academy of Sciences,Shenyang 110168,P.R.China;School of Software Technology,Dalian University of Technology,Dalian,Liaoning 116024,P.R.China)
出处 《重庆大学学报》 CSCD 北大核心 2022年第5期1-8,共8页 Journal of Chongqing University
基金 国家自然科学基金资助项目(61672123)。
关键词 电力负荷预测 深度森林 预测方法 智能电网 power load forecasting deep forest forecasting method smart grid
  • 相关文献

参考文献7

二级参考文献104

  • 1张利彪,周春光,马铭,刘小华.基于粒子群算法求解多目标优化问题[J].计算机研究与发展,2004,41(7):1286-1291. 被引量:224
  • 2李钷,李敏,刘涤尘.基于改进回归法的电力负荷预测[J].电网技术,2006,30(1):99-104. 被引量:55
  • 3俞明生,冯桂宏,杨祥.组合优化灰色模型在中长期电力负荷预测中的应用[J].沈阳工业大学学报,2007,29(2):153-156. 被引量:20
  • 4Masters C L. Voltage rise: the big issue when connecting embedded generation to long 11 kV overhead lines[J]. Power Engineering Joumal, 2002, 16(1): 5-12.
  • 5Po-Chen C, Saleedo R, Qingcheng Z, et al. Analysis of voltage profile problems due to the penetration of distributed generation in low-voltage secondary distribution networks[J]. IEEE Transactions on Power Delivery, 2012, 27(4): 2020-2028.
  • 6Ipakchi A, Albuyeh F. Grid of the future[J]. IEEE Power and Energy Magazine, 2009, 7(2): 52-62.
  • 7Ochoa L F, Dent C J, Harrison G P. Distribution network capacity assessment: variable DG and active networks[J]. IEEE Transactions on Power Systems, 2010, 25(1): 87-95.
  • 8Liew S N, Strbac G. Maximising penetration of wind generation in existing distribution networks[J]. IEE Proceedings-Generation, Transmission and Distribution, 2002, 149(3): 256-262.
  • 9Siano P, Chen P, Chen Z, et al. Evaluating maximum wind energy exploitation in active distribution networks[J]. IET Generation, Transmission&Distribution, 2010, 4(5): 598-608.
  • 10Zhou Q, Bialek J W. Generation curtailment to manage voltage constraints in distribution networks[J], lET Generation, Transmission &Distribution, 2007, 1(3): 492-498.

共引文献191

同被引文献39

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部