期刊文献+

基于范数加权的二维主成分分析提取图像特征

Two-dimensional principal component analysis based on norm weighted to extract image features
下载PDF
导出
摘要 为了能准确地进行图像特征提取,提出一种新的基于Nuclear范数与Frobenius范数加权的二维主成分分析(记为NF-2DPCA)方法。并利用来自于Yalefaces、AR数据库以及ORL人脸数据库中的数据,进行了图像面部识别和重建等相关实验,结果表明所提出的方法能够有效地提取图像特征,并且面部识别准确率最高能达到94.25%,进一步显示所提方法具有一定优越性。 In order to extract image features accurately,a new Two-dimensional principal component analysis(NF-2DPCA)method weighted by Nuclear norm and Frobenius norm was proposed.Using the data from Yalefaces,AR database and ORL face database,the relevant experiments of image face recognition and reconstruction were carried out.The results showed that the proposed method can effectively extract image features,and the highest accuracy of face recognition can reach 94.25%,which further showed that the proposed method has certain advantages.
作者 胡卫强 周浩 汪祥 HU Weiqiang;ZHOU Hao;WANG Xiang(Department of Mathematics,Nanchang University,Nanchang 330031,China)
机构地区 南昌大学数学系
出处 《南昌大学学报(工科版)》 CAS 2022年第1期97-102,共6页 Journal of Nanchang University(Engineering & Technology)
基金 国家自然科学基金项目(11801258,11961048,12001262) 江西省自然科学基金项目(20181ACB20001)。
关键词 二维主成分分析 特征提取 FROBENIUS范数 Nuclear范数 two-dimensional principal component analysis feature extraction Frobenius norm Nuclear norm
  • 相关文献

参考文献3

二级参考文献17

共引文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部