期刊文献+

基于卡尔曼滤波预测策略的动态多目标优化算法 被引量:4

Dynamic multi-objective optimization algorithm based on Kalman filter prediction strategy
原文传递
导出
摘要 为利用种群历史信息更有效地处理动态多目标优化的环境变化问题,提出了一种基于卡尔曼滤波预测并修正种群中心点位置的动态多目标优化算法。当环境变化后,利用卡尔曼滤波预测模型结合上一时刻的中心点预测当前时刻的种群中心点,使用近似理想Pareto最优解集中心点对该预测值进行误差修正,并基于修正后的中心点生成新的个体以重新初始化种群。为增加种群多样性,在算法运行期间从搜索空间随机生成5个新的个体,并随机替换当前种群中相应数量的个体。将本文算法与其他动态多目标优化算法在多个测试函数中进行了对比实验,结果表明,本文算法在整个进化过程中,改进的逆世代距离(MIGD)值都相对比较小,逆世代距离(IGD)值总体上比对比算法小,计算耗时与对比算法相当。 In order to deal with the environmental changes of dynamic multi-objective optimization more effectively,a dynamic multi-objective optimization algorithm based on Kalman filter prediction strategy is proposed.In the evolution process,a new calculation method is used to calculate the population center point.When the environment changes,the Kalman filter prediction model is used to predict the current population center point,and the approximate true Pareto center point of optimal solution set is used to correct the prediction value,and new individuals are generated based on the modified center point to reinitialize the population during the running of the algorithm;In order to increase the diversity of the population,five new individuals are randomly generated from the search space during the operation of the algorithm,and the corresponding number of individuals in the current population are randomly replaced.Compared with other dynamic multi-objective optimization algorithms in multiple test functions,the results show that the value of Modified Inverted Generational Distance(MIGD)in the whole evolution process is relatively small,and the value of Inverted Generational Distance(IGD)in the evolution is generally smaller than that of the contrast algorithm,and the calculation time is equivalent to that of the comparison algorithm.
作者 马永杰 陈敏 MA Yong-jie;CHEN Min(School of Physics and Electronic Engineering,Northwest Normal University,Lanzhou 730070,China)
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2022年第6期1442-1458,共17页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(62066041)。
关键词 模式识别与智能系统 动态多目标优化 进化算法 卡尔曼滤波预测 pattern recognition and intelligent system dynamic multi-objective optimization evolutionary algorithm Kalman filter prediction
  • 相关文献

参考文献10

二级参考文献68

  • 1姚新,徐永.Recent Advances in Evolutionary Computation[J].Journal of Computer Science & Technology,2006,21(1):1-18. 被引量:30
  • 2刘淳安,王宇平.动态多目标优化的进化算法及其收敛性分析[J].电子学报,2007,35(6):1118-1121. 被引量:21
  • 3Shengxiang Yang,Renato Tinós.A Hybrid Immigrants Scheme for Genetic Algorithms in Dynamic Environments[J].International Journal of Automation and computing,2007,4(3):243-254. 被引量:9
  • 4Farina M, Deb K, Amato P. Dynamic multiobjective optimization problems: Test cases, approximations, and applications EJ~. IEEE Trans on Evolutionary Computation, 2004, 8(5): 425-442.
  • 5Greeff M, Engelbrecht A P. Solving dynamic multi objective problems with vector evaluated particle swarm optimization [C] //Proc of Congress on Evolutionary Computation. Piscataway, NJ: IEEE, 2008 : 2917-2924.
  • 6Talukder AKMKA, Kirley M. A pareto following variation operator for evolutionary dynamic multi-objective optimization [C] //Proc of Congress on Evolutionary Computation. Piscataway, NJ: IEEE, 2008:2270-2277.
  • 7ChiKeong G, Chen T K. A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization [J]. IEEE Trans on Evolutionary Computation, 2009, 13(1): 103-127.
  • 8Potter M A. The design and analysis of a computational model of cooperative coevolution [D]. Fairfax, VA: George Mason University, 1997.
  • 9van den Bergh F, Engelbreeht A P. A cooperative approach to particle swarm optimization [J].IEEE Trans on Evolutionary Computation, 2004, 8(3): 225-239.
  • 10van den Bergh F, Engelbreeht A P. Effect of swarm size on cooperative particle swarm optimizaters [C] //Proc of the Genetic and Evolutionary Computation. New York: ACM, 2001 : 1-8.

共引文献127

同被引文献58

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部