摘要
介绍了物联网技术和图像处理流程,研究了基于视频图像处理和卷积CNN算法的森林火灾烟雾识别模型,设计了一套农业森林智慧烟感预警系统。实验结果表明:该系统和颜色+运动+形态、Gabor小波相比,学习效率和准确率均较高,具有非常好的收敛性,在森林发生火灾时能够灵敏地检测到,且报警及时,证明了系统具有一定的可行性。
It introduces the Internet of things technology and image processing process,studies the agricultural forest fire smoke recognition model based on video image processing and convolution CNN algorithm,and realizes a set of agricultural forest intelligent smoke sensing early warning system.The experimental results show that:compared with color+motion+morphology and Gabor wavelet,the system has higher learning efficiency,higher recognition accuracy,and has very good convergence.It can detect fire in agricultural forest sensitively and alarm in time,which proves the feasibility of the system.
作者
张松涛
张洪敏
安浩平
杨森
吴洋
Zhang Songtao;Zhang Hongmin;An Haoping;Yang Sen;Wu Yang(Henan Academy of Science Applied Physics Institute Co.Ltd.,Zhengzhou 450008,China)
出处
《农机化研究》
北大核心
2022年第8期229-233,共5页
Journal of Agricultural Mechanization Research
基金
河南省重点科技攻关项目(172102210127)。
关键词
森林智慧烟感预警系统
物联网
视频图像处理
卷积CNN
intelligent smoke sesnsing early warning system
Internet of Things
video image processing
convolution CNN