期刊文献+

一种改进SM谱聚类算法的棉田棉花精确分割

An Improved SM Spectral Clustering Algorithm for Accurate Cotton Segmentation in Cotton Fields
下载PDF
导出
摘要 根据棉田棉花生长特点,利用最大熵法进行背景增强,在Lab颜色空间中进行图像预处理;利用粒子群优化算法得到局部最优,结合SM谱聚类算法,自发式地快速确定最佳聚类数。对自然环境下棉田棉花图像的进行分割实验,识别准确率为93.1%,相对误差率为2.22%,分割时间为2.067s,证明所提出的算法对于复杂环境下的棉花图像分割的精确性较高,并能够满足采棉机器人在实时行走过程中对图像分割的准确率和实时快速的要求,为采棉机器人的路径规划提供了快速、有效的新方法。 According to the characteristics of cotton growth in cotton field,the maximum entropy method is used to enhance the background,and image preprocessing is carried out in the lab color space;the particle swarm optimization algorithm is used to obtain the local optimum,and the SM spec-tral clustering algorithm is used to quickly deter-mine the optimal cluster number.Through the seg-mentation experiment of cotton image in cotton field in natural environment,the results show that the accuracy of cotton recognition in cotton field is 93.1%,the relative error rate is 2.22%,and the seg-mentation time is 2.067s,which proves that the proposed algorithm is fast and accurate for cotton image segmentation in complex environment,and can meet the requirements of image segmentation accuracy and real-time speed of cotton picking ro-bot in the process of real-time walking.It provides a fast and new solutions for the path planning of cottonpicking robot.
作者 刘亚芳 买买提明·艾尼 古丽巴合尔·托乎提 居来提·买提肉孜 Liu Yafang;Mamtimin·Geni;Gulbahar·Tohti;Julaiti·Maitirouzi(College of Mechanical Engineering,Xinjiang University, Urumqi 830047,China;Urumqi Bayboll Mechatronics Technology Co.Ltd., Urumqi 830002,China)
出处 《农机化研究》 北大核心 2022年第12期35-41,共7页 Journal of Agricultural Mechanization Research
基金 国家自然科学基金项目(11772289)。
关键词 棉田棉花 精确分割 谱聚类 SM算法 粒子群优化 cotton in cotton field segmentation spectral clustering SM algorithm particle swarm optimization
  • 相关文献

参考文献15

二级参考文献194

共引文献211

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部