摘要
针对目前棉花穴播器播种过程中人工监测难度大、现有播种监测系统较少的问题,设计了一种采用LabVIEW视觉运动图像处理技术对棉种排种性能自动监测的系统,并对棉花精量穴播器播种监测系统进行试验验证。试验结果表明:总穴播播种量的的实际值与测量值的误差为0.5%~6.0%,穴播总量可以满足实际工作;实际穴粒数合格率为93.5%~98.0%,重播率为1.0%~3.5%,空穴率为1.0%~3.5%。LabVIEW视觉系统监测穴粒数合格率为91.5%~97.0%,重播率为2.0%~4.5%,空穴率为1.0%~4.0%,合格率监测的最大相对误差为2.7%。由此表明:该视觉系统性能稳定,监测精度高,能够对棉花精量穴播器播种的合格率、空穴率和重播率进行自动监测,为穴播器的自动监测提供了理论依据。
In view of the difficulty of manual monitoring during the seeding process of cotton drills and the lack of existing seeding monitoring systems,a system that uses LabVIEW visual motion image processing technology to automatically monitor cotton seed metering performance is designed.The main design content is correct the cotton precision hole planter seeding monitoring system was tested and verified.The results show that the minimum relative error between the actual value of the seeding quantity and the measured value is 0.5%,and the maximum relative error is 6.0%.The seeding quantity can meet the needs of actual work.The test results of the qualified rate of the number of holes are:the actual qualified rate of the number of holes is 93.5%-98.0%,the replay rate is between 1.0%-3.5%,and the hole rate is between 1.0%-3.5%;LabVIEW visual system monitors the number of holes the pass rate is 91.5%-97.0%,the replay rate is 2.0%-4.5%,the cavitation rate is 1.0%-4.0%,and the maximum relative error of the pass rate monitoring is 2.7%,indicating that the visual system has stable performance and high monitoring accuracy.It can automatically monitor the qualified rate,cavitation rate and rebroadcast rate of the cotton precision hole planter,which provides a theoretical basis for the automatic monitoring of the hole planter.
作者
曹叶
郭文松
赵鹏飞
王旭峰
王龙
杨乔楠
Cao Ye;Guo Wensong;Zhao Pengfei;Wang Xufeng;Wang Long;Yang Qiaonan(School of Information Engineering,Tarim University,Alar 843300,China;School of Mechanical and Electrical Engineering,Tarim University,Alar 843300,China)
出处
《农机化研究》
北大核心
2022年第11期135-141,共7页
Journal of Agricultural Mechanization Research
基金
新疆兵团中青年领军人才项目(S2019CB1616)
塔里木大学校长基金项目(TDZKQN201803)
塔里木大学科研创新项目(TDGRI201924)。