期刊文献+

TSAIE:图像增强文本的多模态情感分析模型 被引量:2

TSAIE: Text Sentiment Analysis Model Based on Image Enhancement
下载PDF
导出
摘要 【目的】近年来,以图文结合的多模态数据分析模型已经逐渐成为社交网络中情感分析的重要途径。【方法】本文针对多模态情感分析中存在的图文特征融合问题,提出了一种基于图像增强文本的多模态情感分析模型TSAIE。该模型分别提取文本特征和图片特征,然后设计了基于Transformer编码器与注意力机制的组合注意力图文特征融合模块,通过该模块计算出文本中的每一个词和图片的信息相关度,提升文本特征的情感表征能力,最后将经过组合注意力计算之后的文本特征与图片特征拼接后输入全连接层。【结论】实验结果表明,在MVSA-Single数据集上,情感分类的准确率和F1值分别提高了3.11%和2.53%,在MVSA-Multi数据集上,情感分类的准确率和F1值分别提高了1.33%和0.74%,从而验证了TSAIE模型的有效性。 [Objective]In recent years,the multimodal data analysis model combined with text and image has gradually become an important approach for sentiment analysis in social networks.[Methods]Aiming at the problem of image and text feature fusion in multimodal sentiment analysis,a multimodal sentiment analysis model TSAIE based on image enhancement is proposed.The model extracts text features and image features respectively.A combined attention graphic feature fusion module based on Transformer Encoder and attention mechanism is designed.Through this module,the information relevance of each word and picture in the text is calculated to improve the emotional representation ability of text features.Finally,the text feature and image feature after combined attention calculation are concatenated and input into the full connection layer.[Conclusions]The experimental results show that the accuracy and F1 value of sentiment classification are increased by 3.11%and 2.53%respectively on the MVSA-single data set,and 1.33%and 0.74%respectively on the MVSA-Multi data set,thus verifying the effectiveness of the TSAIE model.
作者 刘琦玮 李俊 顾蓓蓓 赵泽方 LIU Qiwei;LI Jun;GU Beibei;ZHAO Zefang(Computer Network Information Center,Chinese Academy of Sciences,Beijing 100083,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《数据与计算发展前沿》 CSCD 2022年第3期131-140,共10页 Frontiers of Data & Computing
关键词 多模态 情感分析 TRANSFORMER 注意力机制 图文特征融合 multimodal sentiment analysis Transformer attention mechanism image add text feature fusion
  • 相关文献

参考文献13

二级参考文献91

  • 1张珊,于留宝,胡长军.基于表情图片与情感词的中文微博情感分析[J].计算机科学,2012,39(S3):146-148. 被引量:55
  • 2朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 3柴玉梅,王宇.基于TFIDF的文本特征选择方法[J].微计算机信息,2006,22(08X):24-26. 被引量:32
  • 4Cawie R. Emotion recognition in human -computer interaction [ J ]. IEEE Signal Processing Magazine,2001,18 ( 1 ) :32.
  • 5Taki kanda. Kansei sessions[ C]//IEEE International Conference on Systems Man and Cybernetics,Japan:Tokyo,1999.
  • 6Ritendra Datta, Dhiraj Joshi, Jia Li, et al. Studying Aesthetics in photographic images using a computationla approach [ J ]. Lecture Notes in Computer Science, 2006, 3953:288.
  • 7易晓.现代构成艺术[M].武汉:武汉大学出版社,2000.
  • 8Laine A, Fan J. Texture Discrimination and classification by wavelet packets [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1993,15 ( 11 ) : 1186.
  • 9Ortega M. Supporting similarity queries in MARS[ C ]// Procedings of the Fifth ACM International Conference on Multimedia, Seattle : WA, 1997:403 - 413.
  • 10古大治,傅师申,杨仁鸣著.色彩与图形视觉原理[M].北京:科学出版社,2000.

共引文献268

同被引文献24

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部