期刊文献+

Achieving stable relaxor antiferroelectric P phase in NaNbO_(3)-based lead-free ceramics for energy-storage applications 被引量:1

原文传递
导出
摘要 Compared with antiferroelectric(AFE)orthothombic R phases,AFE orthothombic P phases in Na NbO_(3)(NN)ceramics have been rarely investigated,particularly in the field of energy-storage capadtors.The main bottlenedk is closely related to the contradiction between d fficultly achieved stable relaxor AFE P phase and easily induced P-R phase transition during modifying dhemical compositions.Herein,we reporta novel lead-free AFE ceramic of(1-x)NN-x(Bi_(0.5)K_(0.5))ZrO_(3)((1-x)NN-xBKZ)with a pure AFE P phase str ucture,which exhibits excellent energy-storage characteristics,such as an ultrahigh recoverable energy density(W_(rec))-4.4 J/cm^(3) at x=0.11,a large powder density P_(D)-104 MW/cm^(3) and a fast discharge rate t_(0.9)-45 ns.The analysis of polarization-field response,Raman spectrum and transmission elecron microscopy demonstrates that the giant amplification of W_(rec) by≥177% should be ma inly ascribed to the simultaneously and effectively enhanced AFE P phase stbility and its relaxor dharacteristics,resulting in a diffused reversible electric field-induced AFE P-ferroelectric phase transition with concurrently incre.ased driving electric fields.Different from mast(1-x)NN-xABO_(3) systems,it was found that the reduced polarizability of B-site cations dominates the enhanced AFE P-phase stability in(1-x)NN-xBKZ ceramics,but the almost unchanged tolerance factor tends to ause the AFE R phase to be induced at a relatively high x value.
出处 《Journal of Materiomics》 SCIE 2022年第3期618-626,共9页 无机材料学学报(英文)
基金 Financial support from the National Natural Science Foundation of China(Grant No.52072103 and U19A2087) the AHPU innovation team project(S022021058)is gratefully acknowledged.
  • 相关文献

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部