期刊文献+

Crystal structure guided machine learning for the discovery and design of intrinsically hard materials

原文传递
导出
摘要 In this work,a machine learning(ML)model was created to predict intrinsic hardness of various compounds using their crystal chemistry.For this purpose,an initial dataset,containing the hardness values of 270 compounds and counterpart applied loads,was employed in the learning process.Based on various features generated using crystal information,an ML model,with a high accuracy(R^(2)=0.942),was built using extreme gradient boosting(XGB)algorithm.Experimental validations conducted by hardness measurements of various compounds,including MSi_(2)(M=Nb,Ce,V,and Ta),Al_(2)O_(3),and FeB_(4),showed that the XGB model was able to reproduce load-dependent hardness behaviors of these compounds.In addition,this model was also used to predict the behavior based on prototype crystal structures that are randomly substituted with elements.
出处 《Journal of Materiomics》 SCIE 2022年第3期678-684,共7页 无机材料学学报(英文)
基金 This research was supported by National Research Foundation(NRF)of South Korea(2020R1A2C1004720).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部