摘要
目标检测技术应用非常广泛,主要用于识别以及定位图像中的物体,是发展较快的一种技术。在广泛文献调研的基础上对大量检测算法进行了研究,对各种主流网络框架的结构、优缺点作出综述,从两阶段、一阶段两种范式对不同模型的原理、优点等进行了分析,对常用数据集进行了简单介绍,并对其未来发展趋势给出了合理的分析预测。
Target detection technology is widely used. It is mainly used to identify and locate objects in images. It is a rapidly developing technology. On the basis of extensive literature research, this paper studies a large number of detection algorithms,summarizes the structure, advantages and disadvantages of various mainstream network frameworks, analyzes the principles and advantages of different models from two-stage and one-stage paradigms, briefly introduces the common data sets, and gives a reasonable analysis and prediction of their future development trend.
作者
王树贤
翟远盛
WANG Shuxian;ZHAI Yuansheng(School of Electrical Engineering and Automation,Jiangxi Uni vers让y of Science and Technology,Ganzhou Jiangxi 341000,China)
出处
《信息与电脑》
2022年第6期67-69,共3页
Information & Computer
关键词
目标检测
深度学习
卷积神经网络
计算机视觉
object detection
deep learning
convolutional neural network
computer vision