期刊文献+

CaBr_(2)溶液除湿再生性能及腐蚀性实验研究 被引量:3

Experimental study on dehumidification and regeneration performance and corrosiveness of CaBr_(2) solution
下载PDF
导出
摘要 为提升溶液除湿系统的再生性能、提高低品位能源的转化率,降低腐蚀性与初始成本,建立离子压降模型来选择压降能力强的CaBr_(2)溶液,基于静态法测量了该溶液的饱和蒸气压并确定了溶液配比;采用除湿量、再生量与空气进出口含湿量差值3个评判指标研究了不同工况下CaBr_(2)溶液的除湿/再生性能;将CaBr_(2)溶液与LiCl、LiBr溶液进行了腐蚀性、经济性对比.结果表明:3种溶液的除湿性能彼此接近,但CaBr_(2)溶液再生量比LiCl溶液平均提高了14.2%,比LiBr溶液平均提高了17.1%;CaBr_(2)溶液腐蚀速率小于LiCl溶液腐蚀速率,与LiBr溶液腐蚀速率相当;单位体积CaBr_(2)溶液成本最低,约为LiBr溶液成本的55%、LiCl溶液成本的50%.CaBr_(2)有望成为传统除湿溶液的替代品. To improve the regeneration performance of liquid desiccant systems,increase the conversion of low-grade energy and reduce corrosion and initial costs,an ionic pressure drop model was developed to select a CaBr_(2) solution with the high pressure drop capacity and the saturated vapor pressure of the solution was measured based on the static method to determine the solution proportioning.Three evaluation criteria,including dehumidification/regeneration amount and the difference between air inlet and outlet moisture content were used to evaluate the dehumidification/regeneration performance of the CaBr_(2) solution under different working conditions.The corrosiveness and the economy of the CaBr_(2) solution were compared with LiCl and LiBr solutions.Experimental results indicate that the dehumidification performance of the three solutions are close to each other,but the regeneration amount of the CaBr_(2) solution is by an average of 14.2%higher than that of the LiCl solution,and by an average of 17.1%higher than that of the LiBr solution;the corrosion rate of the CaBr_(2) solution is only half of that of the LiCl solution,which is almost the same as that of the LiBr solution.The cost per unit volume of the CaBr_(2) solution is the lowest,about 55%of the cost of the LiBr solution and 50%of the cost of the LiCl solution.CaBr_(2) is expected to be an alternative to traditional dehumidification solutions.
作者 童守宝 车春文 殷勇高 Tong Shoubao;Che Chunwen;Yin Yonggao(School of Energy and Environment,Southeast University,Nanjing 210096,China;Engineering Research Center for Building Energy Environment and Equipments of Ministry of Education,Southeast University,Nanjing 210096,China)
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第3期425-432,共8页 Journal of Southeast University:Natural Science Edition
基金 国家重点研发计划资助项目(2019YFB1504301).
关键词 CaBr_(2)除湿溶液 饱和蒸气压 腐蚀性 经济性 实验研究 CaBr_(2)dehumidifying solution saturated vapor pressure corrosiveness economical efficiency experimental study
  • 相关文献

参考文献3

二级参考文献34

  • 1张小松,费秀峰.溶液除湿蒸发冷却系统及其蓄能特性初步研究[J].大连理工大学学报,2001,41(z1):30-33. 被引量:15
  • 2江亿,薛志峰.北京市建筑用能现状与节能途径分析[J].暖通空调,2004,34(10):13-16. 被引量:56
  • 3江亿,李震,陈晓阳,刘晓华.溶液除湿空调系列文章 溶液式空调及其应用[J].暖通空调,2004,34(11):88-97. 被引量:93
  • 4殷勇高,张小松,李应林,管振水.蓄能型太阳能溶液除湿蒸发冷却空调系统研究[J].东南大学学报(自然科学版),2005,35(1):73-76. 被引量:21
  • 5Tchernev D I. Regenerative zeolite heat pump [ J ]. Studies in Surface Science and Catalysis, 1989, 49( 1 ) : 519 - 526.
  • 6Teng Y, Wang R Z, Wu J Y. Study of the fundamentals of absorption systems [ J ]. Applied Thermal Engi- neering, 1997, 17(4) :327-338.
  • 7Zhu D S, Wang S W. Experimental investigation of contact resistance in adsorber of solar adsorption refrigeration [J]. Solar Energy, 2002,73(3):177-185.
  • 8Nguyen V M, Riffat S B, Doherty P S. Development of a solar-powered passive ejector cooling system [ J ]. Applied Thermal Engineering, 2001,21 ( 2 ) : 157 - 168.
  • 9Selvaraju A, Mani A. Experimental investigation on R134a vapour ejector refrigeration system [J]. International Journal of Refrigeration, 2006,29 ( 7 ) : 1160-1166.
  • 10Sick F, Bushulte T K, Klein S A, et al. Analysis of the seasonal performance of hybrid liquid desiccant cooling systems[J]. Solar Energy, 1988, 40(3) :211-217.

共引文献27

同被引文献38

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部