期刊文献+

基于割点的社交网络影响最大化问题 被引量:1

Cut-Vertex-Based Influence Maximization Problem in Social Network
下载PDF
导出
摘要 影响最大化问题是社交网络分析中的重要问题,社交网络结构的多样化不断给影响最大化问题注入活力,让它在近二十年里经久不衰,一直是学术界的热门问题。针对已有影响最大化问题的研究,主要关注节点的特征,较少从社交网络的连通性角度来看待影响最大化问题。而割点作为连通分量间的桥梁,是连通性的核心。为此,综合考虑社交网络的节点特征和连通性,提出了基于割点的启发式算法来求解影响最大化问题。该算法用度和连通分量评估节点的影响力,在一定程度上解决了影响力重叠的问题。基于传染病模型,在四个开源数据集上进行了相关实验。在算法对比实验中,基于割点的影响最大化算法在运行时间、影响传播范围和种子富集性指标中表现优异,验证了算法的实用性和有效性。 Influence maximization problem is an important issue in social network analysis,the diversity of social network structure has continuously injected vitality into the influence maximization problem,which has been a hot issue in academic circles for nearly two decades.The research on the existing problem of influence maximization mainly focuses on the characteristics of the node,and rarely considers the influence maximization problem from the perspective of social networks connectivity.As a bridge between connected components,the cut-vertex is the core of connectivity.To this end,this paper comprehensively considers the characteristics of node and connectivity of social networks,and proposes a heuristic algorithm based on cut-vertex to solve the influence maximization problem.The algorithm uses degree and connected components to evaluate the influence of nodes,which solves the problem of overlapping influences to a certain extent.Based on the susceptible-infected-recovered model,this paper conducts related experiments on four open source datasets.In the algorithm comparison experiment,the influence maximization algorithm based on the cut-vertex performs well in terms of the running time,influence spread range and seed enrichment,which verifies the practicality and effectiveness of the algorithm.
作者 杨书新 宋建缤 梁文 YANG Shuxin;SONG Jianbin;LIANG Wen(School of Information Engineering,Jiangxi University of Science and Technology,Ganzhou,Jiangxi 341000,China;School of Computer Science and Technology,Changchun University of Science and Technology,Changchun 130000,China)
出处 《计算机科学与探索》 CSCD 北大核心 2022年第6期1316-1326,共11页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金(61662028) 江西省教育厅科学技术研究项目基金(GJJ170518) 江西省研究生创新专项资金项目(YC2018-S331)。
关键词 社交网络 割点 影响最大化 social networks cut-vertex influence maximization
  • 相关文献

参考文献6

二级参考文献45

  • 1潘灶烽,汪小帆,李翔.可变聚类系数无标度网络上的谣言传播仿真研究[J].系统仿真学报,2006,18(8):2346-2348. 被引量:87
  • 2Domingos P, Richardson M. Mining the network value of customers//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, USA, 2001:57-66.
  • 3Richardson M, Domingos P. Mining knowledge-sharing sites for viral marketing//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Edmonton, Canada, 2002:61-70.
  • 4Kempe D, Kleinberg J, Tardos E. Maximizing the spread of influence through a social network//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, USA, 2003= 137-146.
  • 5Leskovec J, Krause A, Guestrin C, et al. Cost-effective outbreak detection in networks//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose, USA, 2007 420-429.
  • 6Goyal A, Lu Wei, Lakshmanan L V S. CELFT+ : Optimizing the greedy algorithm for influence maximization in social networks//Proceedings of the 20th International Conference Companion on World Wide Web. Hyderabad, India, 2011 47-48.
  • 7Leskovec J. Dynamics of Large Networks. Pittsburgh, USA: Addison Wesley Publishing Company, 2008.
  • 8Kimura M, Saito K, Nakano R. Extracting influential nodes for information diffusion on a social network//Proceedings of the 22nd AAAI Conference on Artificial Intelligence and the 19th Innovative Applications of Artificial Intelligence Conference. Vancouver, Canada, 2007 1371-1376.
  • 9Chen Wei, Wang Yajun, Yang Siyu. Efficient influence maximization in social networks//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris, France, 2009:199-208.
  • 10Wang Yu, Cong Gao, Song Guojie, Xie Kunqing. Community- based greedy algorithm for mining top-k influential nodes in mobile social networks//Proeeedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, USA, 2010.. 1039 1048.

共引文献23

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部