期刊文献+

基于GM(1,1)模型的绍兴市“十四五”期间护理人力资源预测研究 被引量:5

Research on nursing human resource prediction based on GM(1,1)model during the 14th Five-Year Plan Period in Shaoxing
下载PDF
导出
摘要 目的以浙江省绍兴市每千常住人口注册护士数为例,运用GM(1,1)模型对区域护理卫生人力资源进行预测,以期为卫生健康管理部门提供决策支持。方法收集2011—2020年绍兴市每千常住人口注册护士数,运用GM(1,1)模型对区域护理人员需求进行预测分析。结果运用GM(1,1)模型预测该区域未来3年每千常住人口护士数呈上升趋势,预测值与实际值拟合误差较小,预测精度为优(C=0.231,α=-0.066);根据模型预测2021—2023年绍兴市每千常住人口注册护士数将分别达到3.72、3.97、4.25人。结论GM(1,1)模型能较好地拟合区域护理人力资源需求在时间序列数据上的变化,为科学、合理地配置区域卫生人力资源提供依据。 Objective To predict the regional nursing and health human resources with the use of GM(1,1)model by taking the prediction of the number of nurses per thousand permanent residents as an example,in order to provide decision support for the health management department.Methods The number of registered nurses per thousand resident population in Shao-xing from 2011 to 2020 was collected,and the GM(1,1)model was used to predict and analyze the demand for regional nurses.Results The number of nurses per thousand resident population in the region predicted by GM(1,1)model showed an upward trend in the next three years.The fitting error between the predicted value and the actual value was small,and the prediction accuracy was excellent(C=0.231,α=-0.066).According to the model,the number of registered nurses per 1000 resident population in Shaoxing predicted from 2021 to 2023 will reach 3.72,3.97,and 4.25,respectively.Conclusion The GM(1,1)model can fit the demand changes for regional nursing human resources in time series data,and can provide a basis for scientific and rational allocation of regional health human resources.
作者 张春霞 阮伟良 林建潮 Zhang Chunxia;Ruan Weiliang;Lin Jianchao(Shaoxing Second Hospital, Shaoxing 312000, China)
机构地区 绍兴第二医院
出处 《中国医院统计》 2022年第2期140-143,共4页 Chinese Journal of Hospital Statistics
基金 浙江省康恩贝医院管理软科学研究项目立项课题(2021ZHA-KEB331) 绍兴市柯桥区哲学社会科学研究立项课题(2021CG74)。
关键词 GM(1 1)模型 护理人力资源 预测 GM(1,1)model nursing human resource prediction
  • 相关文献

参考文献10

二级参考文献83

共引文献200

同被引文献55

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部