期刊文献+

ORC工况R134a在强化管内流动换热研究 被引量:1

Investigation of R134a Flow Boiling in Enhanced Tubes Under ORC Conditions
原文传递
导出
摘要 ORC是余热回收的重要方式,蒸发器设计是其中非常重要的环节。针对目前ORC工况下有机工质在强化管内流动换热的实验数据非常缺乏的现状,本文进行了实验研究,得到ORC工况下R134a在强化管内流动换热数据,为ORC换热器的设计提供参考。本文得到了换热系数和壁温随干度的变化规律,分析了质量流量和饱和压力等因素对换热效果的影响。结果表明,换热系数随干度增加而降低,增加质量流量可提高换热系数,而增加系统压力不利于强化换热。通过对比光管和强化管的实验数据,可以看出强化管可以显著地抑制壁温分离,从而强化换热。 ORC is an effective method to recover waste heat,in which the evaporator is a vital part.However,flow boiling characteristics of organic fluids in enhanced tubes for ORC conditions has not been studied well.Therefore,experiments of R134a flow boiling in enhanced tubes for the ORC working conditions were conducted to obtain the flow boiling characteristics and provide references for the design of evaporators.In this study,variation of heat transfer coefficient and wall temperature with vapor quality is obtained,and the effects of mass flow rate and saturation pressure on the heat transfer are analyzed.The results showed that the heat transfer coefficient decreases with the increase of vapor quality.Increasing mass flow rate can increase heat transfer coefficient,while increasing system pressure is not conducive to heat transfer enhancement.Comparison between the experimental data of smooth tube and enhanced tube shows that the enhanced tube can significantly inhibit wall temperature separation,thereby enhancing heat transfer.
作者 戴晓业 杜晓杰 田冉 史琳 DAI Xiaoye;DU Xiaojie;TIAN Ran;SHI Lin(Key Laboratory of Thermal Science and Power Engineering of Ministry of Education of China,Department of Thermal Engineering,Tsinghua University,Beijing 100084,China;School of Mechanical Engineering,Beijing Institute of Technology,Beijing 100081,China)
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2022年第5期1310-1315,共6页 Journal of Engineering Thermophysics
基金 国家自然科学基金项目(No.52176011,No.51806117) 国家重点研发计划(No.2016YFB0901405) 国家自然科学基金创新研究群体(No.51621062)。
关键词 有机朗肯循环 R134A 强化管 流动沸腾 ORC R134a enhanced tubes flow boiling
  • 相关文献

参考文献1

二级参考文献11

  • 1Latour S R, Menningmann J G, Blaney B L. Waste Heat Recovery Potential in Selected Industries [ R ]. US Environmental Protection Agency-Industrial Environmental Research Laboratory Report. 1982.
  • 2Borsukiewicz-Gozdur A Nowak W. Comparative analysis of natural and synthetic refrigerants in application to low temperature Clausius-Rankine cycle [ J ]. Energy, 2007, 32 (4): 344-352.
  • 3Miller E W, Hendricks T J, Peterson R B. Modeling energy recovery using thermoelectric conversion integrated with an organic Rankine bottoming cycle [ J ]. Journal of Electronic Materials. 2009, 38 (7) : 1206 - 1213.
  • 4Yang J. Opportunities & Challenges of Thermoelectric Waste Heat Recovery in the Automotive Industry [ C ]. Diesel Engine Emissions Reduction (DEER) Conference, Chicago, 2005.
  • 5Thombare D, Verma S. Technological development in the Stirling cycle engines [ J]. Renewable and Sustainable Energy Reviews, 2008, 12 (1) : 1 -38.
  • 6Wang Jiangfeng , Dai Yiping, Gao Lin. Exergy analyses and parametric optimizations for different cogeneration power plants in cement industry [ J]. Applied Energy. 2009, 86 (6): 941-948.
  • 7Mlcak H A. An Intrtoduction to the Kalina Cycle [ J]. Power, 1996, 30:765-776.
  • 8Sylvain Quoilin, Vincent Lemon. Technological and economical survey of organic rankine cycle systems. 5th European Conference Economics and Management of Energy in Industry. 2009.
  • 9Enertime SAS. ORC : Etude du march6. Confidential report [ R ]. Paris, 2009.
  • 10HungT C, WangSK, Kuo C H, et al. A study of organic working fluids on system efficiency of an ORC using low-grade energy sources [Jl. Energy, 2010, 35 (3): 1403-1411.

共引文献17

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部