期刊文献+

自然对流散热齿的拓扑优化 被引量:3

Topology Optimization of the Natural Convection Fin Heat Sink
原文传递
导出
摘要 采用基于密度的自然对流拓扑优化方法,对三维自然对流散热齿进行了优化设计。采用插值参数渐进方案,并以优化前的散热齿形状作为设计变量的初始分布。拓扑优化得到了在靠近齿片端部处打孔的设计方案,热源平均温度较优化前显著降低。采用阈值过滤提取拓扑优化后的齿片形状,数值模拟结果显示,与原来的无孔散热齿相比,打孔散热齿的热阻降低15%,齿片体积减少5%。打孔虽然削弱了齿片的导热,但强化了齿片与空气的对流。在拓扑优化给出的孔位置和孔尺寸下,对流强化的收益超过导热恶化的损失,综合效果为散热齿散热能力提高,热源平均温度降低。 The density-based topology optimization(TO)method is employed to the thermal optimization design of a three-dimensional natural convection fin heat sink.A parameter advancing scheme is adopted,and the shape of the original heat sink is used as the initial distribution of the design variable.TO predicts a new design where there are holes near the ends of fins,of which the average temperature of the heat source is significantly lower than that before optimization.Use the threshold technique to extract the optimized fin shape,numerical simulation results demonstrate that compared to the original non-hole design,the deign with holes reduces the thermal resistance by 15%,and the fin volume by 5%.Although the holes weaken the heat conduction of the fins,they enhance the heat convection with air.Under the condition of the topology-optimized hole location and hole size,the gain of convection enhancement exceeds the loss of heat conduction deterioration.As a result,the heat dissipation capability of the heat sink is improved and the average temperature of the heat source decreases.
作者 李含灵 蓝代彦 张显明 曹炳阳 LI Hanling;LAN Daiyan;ZHANG Xianming;CAO Bingyang(Key Laboratory for Thermal Science and Power Engineering of Ministry of Education,School of Aerospace Engineering,Tsinghua University,Beijing 100084,China;Thermal Design Reliability Department,ZTE Corporation,Shenzhen 518055,China)
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2022年第5期1357-1361,共5页 Journal of Engineering Thermophysics
基金 国家自然科学基金(No.U20A20301,No.51825601) 中兴通讯研究基金。
关键词 齿片散热器 拓扑优化 自然对流 传热强化 n heat sink topology optimization natural convection heat transfer enhancement
  • 相关文献

参考文献1

二级参考文献40

  • 1Qualcomm, "Rising to Meet the 1000x Mobile Data Challenge: White Paper, 2012.
  • 2Cisco, "Cisco Visual Networking Index: Forecast and Methodology, 2013-2018,' White Paper, June 2014.
  • 3Ericsson, "More than 50 billion eonnected devices," White Paper, 2011.
  • 4METIS. (2012). FP7 European Project 317669 METIS (Mobile and wireless communications Enablers for the Twenty - twenty Information Society). [Online]. Available: https://www.metis2020.com/.
  • 5Cisco. (2014, Feb.). Visual networking index (NVI) white papers. [Online]. Available: http://www.cisco.com/o/ en/usl solu ti onsl servi ce- providerlvisual- networkingindex-vni/white-paper-listing.btml.
  • 6C. Han, T. Harrold, S. Armour, et al., "Green radio: radio techniques to enable energy efficient wireless networks," IEEE Communications Magazine, vol. 49, no. 6, PP. 46-54, Jun. 2011.
  • 7J. G. Andrews, S. Buzzi, W. Choi, et al., "What will 5G he?;", IEEE Journal on Selected Areas in Communications, vol. 32, no. 6, pp, 1065- 1082, Jun. 2014, doi: 1O.1109/JSAC.2014.2328098.
  • 85GNOW. (2012), FP7 European Project 318555 5G NOW (5th Generation NonOrthogonal Waveforms for asynchronous signalling), [Online]. Available: http:// www.5gnow.eu/.
  • 95G PPP. (2013), 5G-Infrastructure Public-Private Partnership, [Online]. Available: http://5g-ppp.eu/.
  • 10C.-X. Wang, F. Haider, X. Gao, et al., "Cellular architecture and key technologies for 5G wireless communication networks," IEEE Communications Magazine, vol. 52, no. 2, PI" 97-105, Feb. 2014.

共引文献1

同被引文献17

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部