期刊文献+

基于多节点拓扑重叠测度高阶MRF模型的图像分割

Image Segmentation Based on Higher-order MRF Model With Multi-node Topological Overlap Measure
下载PDF
导出
摘要 针对低阶马尔科夫随机场(Markov random field, MRF)模型难以有效表达自然图像中复杂的先验知识而造成误分割问题,提出一种基于多节点拓扑重叠测度高阶MRF模型(Higher-order MRF model with multi-node topological overlap measure, MTOM-HMRF)的图像分割方法.首先,为描述图像局部区域内多像素蕴含的复杂空间拓扑结构信息,利用多节点拓扑重叠测度建立图像局部区域的高阶先验模型;其次,利用较大的局部区域包含更多的标签节点信息能力,基于Pairwise MRF模型建立基于局部区域的部分二阶Potts先验模型,提高分割模型的抗噪能力;再次,为有效描述观察图像场与其标签场的似然特征分布,研究利用局部区域内邻接像素的Hamming距离引入图像局部空间相关性,建立局部空间一致性约束的高斯混合分布;最后,基于MRF框架建立用于图像分割的多节点拓扑重叠测度高阶MRF模型,采用Gibbs采样算法对提出模型进行优化.实验结果表明,提出模型不仅能有效抵抗图像强噪声和复杂的纹理突变干扰,鲁棒性更好,而且具有更准确的图像分割结果. Aim at the problem that lower-order Markov random field(MRF) model is inefficient to capture the rich prior knowledge of nature images which may bring out error image segmentation results, a new image segmentation method is proposed based on higher-order MRF model with multi-node topological overlap measure(MTOM-HMRF). Firstly, to capture complex spatial topological structure information embedded in the local region of images,the proposed method utilizes the topological overlap measure among multi-image-pixels to build higher-order prior model for the local region of images. Secondly, according that larger local region contains more information in label nodes, a partial 2-order Potts model is built based on pairwise MRF model, which increases the anti-noise capability of the proposed model. Thirdly, to efficiently describe the likelihood distribution between observed image field and its label field, a local spatial consistency constraints Gaussian mixture distribution is constructed based on the Hamming distribution between neighbor pixels which incorporated image local spatial correlation. Finally, a topological overlap measure higher-order MRF model is proposed for image segmentation based on the MRF framework,and Gibbs sampling algorithm is used to optimize the proposed model. Experimental results on artificial synthesis images and nature images show that the proposed model is not only efficient to overcome the impact of strong noise and complex texture abrupt on image segmentation results, thus possesses more robustness, but also can provide more accurate edge segmentation results.
作者 徐胜军 周盈希 孟月波 刘光辉 史亚 XU Sheng-Jun;ZHOU Ying-Xi;MENG Yue-Bo;LIU Guang-Hui;SHI Ya(School of Information and Control Engineering,Xi'an University of Architecture and Technology,Xi'an 710055)
出处 《自动化学报》 EI CAS CSCD 北大核心 2022年第5期1353-1369,共17页 Acta Automatica Sinica
基金 国家自然科学基金(51678470,61803293) 陕西省自然科学基础研究计划(2020JM-472,2020JM-473,2019JQ-760,2017JM6106,2015JM6276) 陕西省教育厅专项科研项目(18JK0477) 西安建筑科技大学基础研究基金(JC1703,JC1706)资助。
关键词 图像分割 高阶马尔科夫随机场 拓扑重叠测度 高斯混合模型 Gibbs采样算法 Image segmentation higher-order Markov random field(HMRF) topological overlap measure Gaussian mixture model Gibbs sampling algorithm
  • 相关文献

参考文献6

二级参考文献169

  • 1POTETZ B, LEE T S. Efficient belief propagation for higher order cliques using linear constraint nodes [J].Computer Vision and Image Understanding, 2008, 112 (1) :39-54.
  • 2TANAKA M, OKUTOMI M. Locally adaptive learning for translation-variant MRF image priors [C]// [EEE Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA, USA: IEEE Computer Society, 2008 : 1-7.
  • 3CHEN A Y C, CORSO J J, WANG Le. HOPS: Efficient region labeling using higher order proxy neighborhoods [C]//Proceedings of International Conference on Pattern Recognition. Los Alamitos, CA, USA: IEEE Computer Society, 2008 : 1-4.
  • 4WANG Xiaofeng, ZHANG Xiaoping. A new localized superpixel Markov random field for image segmentation [C]//Proceedings of 2009 IEEE Conference Multimedia and Expo. Piscataway, NJ, USA: IEEE, 2009 :642-645.
  • 5CHEN Jiansheng, SU Guangda, HE Jinping, et al. Face image relighting using locally constrained global optimization [C] // Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2010: 44-57.
  • 6LI S Z. Markov random field modeling in computer vision [M]. New York, USA: Springer-Verlag, 2001.
  • 7YEDIDIA J, FREEMAN W, WEISS Y. Generalized belief propagation [C]// Proceedings of Advances in Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 2000:689-695.
  • 8SHI Jianbo, MALLK J. Normalized cuts and image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8) : 888- 905.
  • 9SHARON E, GALUN M, SHARON D, et al. Hierarchy and adaptivity in segmenting visual scenes[J]. Nature, 2006, 442(7104):810-813.
  • 10Verbeek J J, Vlassis N, Krose B. Efficient greedy learning of Gaussian mixture models. Neural Computation, 2003, 15(2): 469-485.

共引文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部