期刊文献+

神经网络模糊PID控制半主动悬架系统 被引量:5

Research on Semi-active Suspension System Based on Neural Network Fuzzy PID Control
下载PDF
导出
摘要 针对半主动悬架系统随路面激励变化产生的振动与冲击,设计一种基于BP(Back Propagation)神经网络模糊PID(Proportional Integral Derivative)控制的半主动悬架控制器,以提升悬架系统的控制精度,改善汽车平顺性。以悬架系统的偏差与偏差变化率为输入参数,利用模糊逻辑规则对输入参数进行模糊化和归一化处理,处理结果作为BP神经网络的输入,通过神经网络在线调整加权系数,实现PID控制参数的优化。为了验证控制效果,对比了BP神经网络模糊PID控制半主动悬架系统、模糊PID控制半主动悬架系统和被动悬架系统的性能,BP神经网络模糊PID控制策略的半主动悬架系统具有更好的控制效果,能够显著改善不同路况下车辆悬架的性能。 Aiming at the vibration and impact of semi-active suspension system with the change of road excitation,a controller based on BP(back propagation)neural network fuzzy PID(proportional integral derivative)control is designed and applied to semi-active suspension system to improve the control accuracy of suspension system and vehicle ride comfort.Taking the deviation and deviation change rate of the suspension system as the input parameters,the fuzzy logic rules are used to fuzzify and normalize the input parameters,and the results above as BP neural network input are used to adjust the weighting coefficient,so as to optimize the PID control parameters.In order to verify the control effect,the performances of semi-active suspension system controlled by BP neural network fuzzy PID and fuzzy PID and passive suspension are compared.The results show that the semi-active suspension system controlled by BP neural network fuzzy PID has better optimal control effect,which can significantly improve the performance of vehicle suspension under different road conditions.
作者 王琳 王文博 钱爱文 WANG Lin;WANG Wenbo;QIAN Aiwen(School of Mechanical and Vehicle Engineering,Bengbu University,Bengbu 233030,China;School of Electrical Engineering and Automation,Luoyang Institute of Science and Technology,Luoyang 471023,China)
出处 《洛阳理工学院学报(自然科学版)》 2022年第2期65-72,共8页 Journal of Luoyang Institute of Science and Technology:Natural Science Edition
基金 安徽省科学研究项目(KJ2018A0568) 蚌埠学院自然科学研究项目(2019ZR01).
关键词 半主动悬架 BP神经网络 模糊PID控制 1/4半主动悬架模型 semi-active suspension BP neural network fuzzy PID control 1/4 semi-active suspension model
  • 相关文献

参考文献8

二级参考文献62

共引文献90

同被引文献66

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部