期刊文献+

知识图谱推理研究综述 被引量:14

Review of Reasoning on Knowledge Graph
下载PDF
导出
摘要 近年来,随着互联网技术以及引用模式的快速发展,计算机世界的数据规模呈指数型增长,这些数据中蕴含着大量有价值的信息,如何从中筛选出知识并将这些知识进行有效组织和表达引起了广泛关注。知识图谱由此而生,面向知识图谱的知识推理就是知识图谱研究的热点之一,已经在语义搜索、智能问答等领域取得了重大成就。然而,由于样本数据存在各种缺陷,例如样本数据缺少头尾实体、查询路径过长、样本数据错误等,因此面对上述特点的零样本、单样本、少样本和多样本知识图谱推理更受瞩目。文中将从知识图谱的基本概念和基础知识出发,介绍近年来知识图谱推理方法的最新研究进展。具体而言,根据样本数据量大小的不同,将知识图谱推理方法分为多样本推理、少样本推理和零与单样本推理。模型使用超过5个实例数进行推理的为多样本推理,模型使用2~5实例数进行推理的为少样本推理,模型使用零个或者一个实例数进行推理的为零与单样本推理。根据方法的不同,将多样本知识图谱推理细分为基于规则的推理、基于分布式的推理、基于神经网络的推理以及基于其他的推理,将少样本知识图谱推理细分为基于元学习的推理与基于相邻实体信息的推理,具体分析总结这些方法。此外,进一步讲述了知识图谱推理的典型应用,并探讨了知识图谱推理现存的问题、未来的研究方向和前景。 In recent years,the rapid development of Internet technology and reference models has led to an exponential growth in the scale of computer world data,which contains a lot of valuable information.How to select knowledge from it,and organize and express this knowledge effectively attract wide attention.Knowledge graphs are also born from this.Knowledge reasoning for knowledge graphs is one of the hotspots of knowledge graph research,and important achievements are obtained in the fields of semantic search and intelligent question answering.However,due to various defects in the sample data,such as the lack of head and tail entities in sample data,the long query path,as well as the wrong sample data.In the face of the above characteristics,the knowledge graph reasoning of zero-shot,one-shot,few-shot and multi-shot get more attention.Based on the basic concepts and basic knowledge of knowledge graph,this paper introduces the latest research progress of knowledge graph reasoning methods in recent years.Specifically,according to the size of sample data,the knowledge graph reasoning method is divided into multi-shot reasoning,few-shot reasoning,zero-shot and single-shot reasoning.Models that use more than five instances for reasoning are multi-sample reasoning,models that use two to five instances for reasoning are few-shot reasoning,and those use zero or one instance number for reasoning are zero-shpt and one-shot reasoning.The multi-shot knowledge graph reasoning is subdivided into rule-based reasoning,distributed-based reasoning,neural network-based reasoning,and other reasoning.The few-shot knowledge graph reasoning is subdivided into meta-learning-based reasoning and neighboring entity information-based reasoning.And these methods are analyzed and summarized.In addition,this paper further describes the typical application of knowledge graph reaso-ning,and discusses the existing problems,future research directions and prospects of knowledge graph reasoning.
作者 马瑞新 李泽阳 陈志奎 赵亮 MA Rui-xin;LI Ze-yang;CHEN Zhi-kui;ZHAO Liang(School of Software Technology,Dalian University of Technology,Dalian,Liaoning 116620,China)
出处 《计算机科学》 CSCD 北大核心 2022年第S01期74-85,共12页 Computer Science
基金 国家重点研发计划(2018YFC0830203) 国家自然科学基金(61906030) 辽宁省自然科学基金(2020-BS-063) 装备预先研究领域基金(80904010301) 中央高校基本科研业务费专项资金(DUT20RC(4)009)。
关键词 知识图谱 知识推理 多样本推理 少样本推理 单样本推理 零样本推理 Knowledge graph Knowledge reasoning Multi-shot reasoning Few-shot reasoning One-shot reasoning Zero-shot reasoning
  • 相关文献

参考文献1

二级参考文献2

共引文献170

同被引文献199

引证文献14

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部