期刊文献+

基于虚拟曝光方法的单幅逆光图像增强 被引量:1

Single Backlit Image Enhancement Based on Virtual Exposure Method
下载PDF
导出
摘要 逆光图像目标区域可视质量低、背景区域过度曝光,是影响图像质量的重要因素之一。针对现有的逆光图像增强方法在增强暗区细节信息时不能很好地抑制明亮区域过度增强的问题,提出了一种基于虚拟曝光的单幅逆光图像增强方法。首先,引入虚拟曝光图像,并根据参数确定最佳低曝光图像和高曝光图像;然后,使用非线性亮度增强方法和基于邻域相关对比度增强方法分别处理暗区和亮区;最后,采用拉普拉斯金字塔融合方法将暗区、亮区的细节和特征融合。使用自然图像和合成图像对所提方法进行实验,结果表明所提方法具有更少的颜色和亮度失真,视觉效果更加自然。 The visual quality of backlit image in target area is low and its background area is overexposed,which are important factors affecting image quality.Aiming at the problem that the existing backlit image enhancement methods cannot suppress the excessive enhancement of bright areas while enhancing the detail information of dark areas well,a single backlit image enhancement method based on virtual exposure is proposed in this paper.First,the virtual exposure image is introduced,and the best low-exposure image and high-exposure image are determined according to parameters.Then,the dark and bright areas are processed by nonlinear enhancement method and the neighborhood correlation method respectively.Finally,the details and features of the dark and bright areas are fused by Laplacian pyramid fusion method.Experiments results based on natural images and synthetic images show that the proposed method has less color and brightness distortion,and the visual effect is more natural.
作者 赵明华 周童童 都双丽 石争浩 ZHAO Ming-hua;ZHOU Tong-tong;DU Shuang-li;SHI Zheng-hao(School of Computer Science and Engineering,Xi'an University of Technology,Xi'an 710048,China;Shaanxi Key Laboratory of Network Computing and Security Technology,Xi'an 710048,China)
出处 《计算机科学》 CSCD 北大核心 2022年第S01期384-389,共6页 Computer Science
基金 国家重点研发计划(2017YFB1402103-3) 陕西省教育厅重点实验室项目(18JS078,20JS086) 国家自然科学基金(61901363,61901362) 陕西省自然科学基金(2019JM-381,2019JQ-729)。
关键词 逆光图像 虚拟曝光方法 非线性图像增强 对比度增强 图像融合 Backlit image Virtual exposure method Nonlinear image enhancement Contrast enhancement Image fusion
  • 相关文献

参考文献2

二级参考文献9

  • 1Bennett E P, McMillan L. Video enhancement using per- pixel virtual exposures[ C]. ACM Transactions on Graph- ies. 2005, 24(3) : 845-852.
  • 2McAndrew A. An introduction to digital image processing with Matlab notes for SCM2511 image processing [ M ]. School of Computer Science and Mathematics, Victoria U- niversity of Technology, Australia, 2004: 37-54.
  • 3Rao Y, Chen 1,. A survey of video enhancement tech- niques[ J ]. Journal of Information Hiding and Multimedia Signal Processing, 2012, 3(1): 76-104.
  • 4Guo L J. Balance contrast enhancement technique and its application in image colour composition [ J ]. Remote Sensing, 1991, 12(10) : 2133-2151.
  • 5Yang Q. An adaptive image contrast enhancement based on difterential evolution [ C ]. IEEE 3rd International Congress on Image and Signal Processing (CISP). 2010, 2 : 631 - 634.
  • 6tlao Y, Hou I,, Wang Z, Chen L. Illumination-based nighttime video contrast enhancement using genetic algo- rithm [ J ]. Muhimedia Tools and Applications, 2012: 1-20.
  • 7Tao L, Asari V. Modified luminance based MSR for fast and efficient image enhancement [ C ]. Applied Imagery Pattern Recognition Workshop, 2003. Proceedings. 32nd. IEEE, Washington DC, 2003: 174-179.
  • 8Guo P, Yang P, Liu Y, Chen L. An adaptive enhance- ment algorithm for low-illumination image based on hue reserving[ C ]. IEEE Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQR- WC), 2011,2: 1247-1250.
  • 9陈喆,蒋羽超,殷福亮.利用β函数映射与帧间信息融合的低照度视频图像增强方法[J].信号处理,2013,29(12):1632-1637. 被引量:4

共引文献11

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部