摘要
利用智能终端设备识别和记录人们日常行为活动对健康监测、残障人士辅助和老年人看护等具有重要意义。已有相关研究大都采用基于机器学习的思路,但都存在着诸如运算资源消耗大、训练数据采集负担重以及不同场景下扩展性低等不足,鉴于此,文中提出了一种基于多源感知和逻辑推理的行为识别技术,通过确定不同肢体之间动作的逻辑关联性,来实现对用户日常生活基础行为的准确刻画,相比已有工作,该技术方案具有运算轻量化、训练成本低及对用户和场景的多样性的扩展能力强等优势,实现了基于上述技术的行为识别系统,并开展了大量实验对系统性能进行评估。结果显示,所提方法对于走、跑、上下楼梯等11种日常行为活动的识别准确率高达90%以上。同时,对比基于机器学习的行为识别方法,所提技术大大减少了用户采集训练数据的量。
The use of smart terminal equipment to identify and record people’s daily behaviors is of great significance for health monitoring,the disabled assistance and elderly care.Most existing related studies adopt machine learning-based ideas,but there are problems such as high consumption of computing resources and training.Due to the heavy burden of data collection and low scalability in different scenarios,this paper proposes a behavior recognition technology based on multi-source perception and logical reasoning.By determining the logical correlation between the actions of different limbs,the accurate description of basic behaviors of users’daily life is realized.Compared with existing work,this technical solution has the advantages of lightweight calculation,low training cost and strong expansion ability to the diversity of users and scenes.This paper realizes a behavior recognition system based on the above technology.A large number of experiments have been carried out to evaluate the performance of the system.The results show that the proposed method has a recognition accuracy of more than 90%for 11 daily behavior activities such as walking,running,and up and down stairs.At the same time,compared with the behavior recognition method based on machine learning,the proposed technique greatly reduces the amount of training data collected by users.
作者
肖治鸿
韩晔彤
邹永攀
XIAO Zhi-hong;HAN Ye-tong;ZOU Yong-pan(College of Computer Science and Software Engineering,Shenzhen University,Shenzhen 518060,China)
出处
《计算机科学》
CSCD
北大核心
2022年第S01期397-406,共10页
Computer Science
关键词
行为识别
逻辑推理
惯性测量单元
可穿戴设备
机器学习
Activity recognition
Logical reasoning
Inertial measurement unit
Wearable devices
Machine learning