期刊文献+

海上风电场通用运维路径规划模型优化及仿真 被引量:3

Optimization and Simulation of General Operation and Maintenance Path Planning Model for Offshore Wind Farms
下载PDF
导出
摘要 海上风电场运维的路径规划是一项极具挑战性和复杂性的任务,需要确定运维所需要的资源、交通工具路径,使得总运维成本最小化。文中在海上风电场运维规划建模方面采用了抽象类的方式,建立了通用性运维路径规划模型框架,该模型有利于兼容不同的海上风电场运维的路径规划与调度决策任务,可提高模型的可扩展性和多场景适用的灵活性。采用改进的自适应大邻域搜索算法(ALNS),提出在含有多个destroy和repair算子的算法基础上,求解基于抽象类的通用运维路径规划模型。选定国内某风电场数据进行仿真实验,通过在ALNS内部对比6个算子求解的结果,以及将ALNS与精确算法结果进行比较,结果显示该算法具有较好的优化效果和可靠性。 The path planning of offshore wind farm operation and maintenance is a challenging and complex task,which needs to determine the resources and transport paths needed by the operation and maintenance,so as to minimize the total operation and maintenance cost.In this paper,the abstract class method is adopted in the modeling of offshore wind farm operation and maintenance planning,and a general operation and maintenance path planning model framework is established.This model is conducive to the compatibility of different offshore wind farm operation and maintenance path planning and scheduling decision-making tasks.improve the scalability of the model and the flexibility of multi-scenario application.In this paper,an improved adaptive large neighborhood search algorithm(ALNS),is proposed to solve the general operation and maintenance path planning model based on abstract class on the basis of the algorithm with multiple destroy and repair operators.Finally,the data of a domestic wind farm is selected for simulation experiment.By comparing the results of six operators within ALNS,and comparing the results of ALNS with the results of accurate algorithm,the results show that the algorithm optimization has better effect and reliability.
作者 谭任深 徐龙博 周冰 荆朝霞 黄向生 TAN Ren-shen;XU Long-bo;ZHOU Bing;JING Zhao-xia;HUANG Xiang-sheng(China Energy Engineering Group Guangdong Electric Power Design Institute Co.,Ltd.,Guangzhou 510663,China;School of Electric Power Engineering,South China University of Technology,Guangzhou 510640,China;Institute of Automation,Chinese Academy of Sciences,Beijing 100190,China)
出处 《计算机科学》 CSCD 北大核心 2022年第S01期795-801,共7页 Computer Science
基金 2019年度广东省促进经济发展专项基金(海洋经济发展用途):海上风电智能运维策略研究(GDOE[2019]A10号)。
关键词 海上风电 通用运维规划模型 抽象类 自适应大邻域搜索 路径规划 Offshore windfarm General operation and maintenance planning model Abstract class Adaptive large neighborhood search Path planning
  • 相关文献

参考文献6

二级参考文献48

  • 1段永瑞.数据包络分析[M].上海:上海科学普及出版社,2006:1.
  • 2吴佳梁,王广良,魏振山.风力机可靠性工程[M].北京:化学工业出版社,2011.
  • 3Wang Z X, Jiang C W, Ai Q, et al. The key technology of offshore wind farm and its new development in China[J]. Renewable and Sustainable Energy Reviews, 2009, 13(1): 216-222.
  • 4Shafiee M. Maintenance logistics organization for offshore wind energy: Current progress and future perspectives[J]. Renewable Energy, 2015, 77: 182-193.
  • 5Perveen R, Kishor N, Mohanty S R. Off-shore wind farm development: present status and challenges[J]. Renewable and Sustainable Energy Reviews, 2014, 29: 780-792.
  • 6Polinder H, Lendenmann H, Chin R, et al. Fault tolerant generator systems for wind turbines[C]//Proceedings of the IEEE International Electric Machines and Drives Conference. Miami, FL: IEEE, 2009: 675-681.
  • 7Lyding P, Faulstich S, Hahn B, et al. Reliability of the electrical parts of wind energy systems-a statistical evaluation of practical experiences[Z]. EPE Wind Energy Chapter Symposium 2010, Staffordshire University, Stafford, UK, 2010.
  • 8Ortegon K, Nies L F, Sutherland J W. Preparing for end of service life of wind turbines[J]. Journal of Cleaner Production, 2013, 39. 191-199.
  • 9Dalgic Y, Lazakis I, Turan O, et al. Investigation of optimum jack-up vessel chartering strategy for offshore wind farm O&M activities [J]. Ocean Engineering, 2015, 95: 106-115.
  • 10Besnard F, Fischer K, Tjemberg L B. A model for the optimization of the maintenance support organization for offshore wind farms[J]. IEEE Transactions on Sustainable Energy, 2013, 4(2): 443-450.

共引文献69

同被引文献8

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部