期刊文献+

基于弱监督的生物医学文献细粒度索引研究

Research on Fine-grained Index of Biomedical Literature Based on Weak Supervision
下载PDF
导出
摘要 目前的语义索引难以满足生物医学科研人员的信息检索需求,因而提出一种在概念级别自动优化主题注释的方法,并将其用于阿尔茨海默氏病的MeSH描述符,该描述符对应于代表疾病亚型的6个不同概念。结果表明,所提出的基于弱监督的索引方案可以改善文字字符串匹配的性能。此外,随着MeSH词库条目信息逐渐完善,所提方案可以提供更加精确的搜索,还可以将主题注释与其他语义信息集成在一起,有助于维护主题注释的一致性。 The current semantic index cannot meet the information needs of researchers.This paper proposes a method for automatically optimizing topic annotations at the concept level and uses it for the MeSH descriptor of Alzheimer’s disease,which corresponds to six different concepts representing disease subtypes.The researching results show that the indexing scheme based on weak supervision proposed in this paper can improve the performance of text string matching.In addition,with the gradual improvement of MeSH thesaurus entry information,the solution proposed in this article can provide more accurate search,and can also integrate topic annotations with other semantic information,which helps maintain the consistency of topic annotations.
作者 王勇 WANG Yong(Shandong Soso Traditional Chinese Medicine Information Technology Co.Ltd.,Ji’nan 250014,China)
出处 《微型电脑应用》 2022年第5期156-158,163,共4页 Microcomputer Applications
关键词 语义索引 MESH 生物医学文献 弱监督 semantic index MeSH biomedical literature weak supervision
  • 相关文献

参考文献9

二级参考文献109

  • 1王淑娟,高宏亮,翟国富.航天继电器多余物自动检测算法的研究[J].宇航学报,2008,29(1):370-374. 被引量:12
  • 2冯建辉,杨玉静.基于灰度共生矩阵提取纹理特征图像的研究[J].北京测绘,2007,21(3):19-22. 被引量:131
  • 3Chapelle O,Scholkopf B,Zien A. Semi-Supervised Learning[M].Cambridge,ma:the Mit Press,2006.
  • 4Zhu X J. Semi-supervised Learning Literature Survey.Technical Report 1530[R].Department of Computer Sciences,University of Wisconsin at Madison,Madison,WI,2006.
  • 5Zhou Z H,Li M. Semi-supervised learning by disagreement[J].Knowledge and Information Systems,2010,(03):415-439.
  • 6Shahshahani B M,Landgrebe D A. The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon[J].IEEE Transactions on Geoscience and Remote Sensing,1994,(05):1087-1095.
  • 7Miller D,Uyar H. A mixture of experts classifier with learning based on both labelled and unlabelled data[A].Cambridge,ma:the Mit Press,1997.571-577.
  • 8Nigam K,McCallum A K,Thrun S,Mitchell T. Text classification from labeled and unlabeled documents using EM[J].Machine Learning,2000,(2-3):103-134.
  • 9Blum A,Mitchell T. Combining labeled and unlabeled data with co-training[A].New York,USA:ACM,1998.92-100.
  • 10Joachims T. Transductive inference for text classification using support vector machines[A].San Francisco,CA,USA,Morgan Kaufmann Publishers Inc,1999.200-209.

共引文献186

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部