期刊文献+

比例数据基于Tobit分位数回归模型的贝叶斯变量选择 被引量:1

Variable Selection of Proportional Data Based on Tobit Quantile Regression Model
原文传递
导出
摘要 针对家庭商业健康保险参保比例在[0,1]闭区间上取值的特点,本文基于Tobit模型给出了比例响应数据的贝叶斯分位数回归建模方法。通过引入回归系数的“Spike-and-slab”先验分布,应用EM算法我们提出了基于门限规则的贝叶斯变量选择方法。大量数值模拟研究验证了所提的贝叶斯变量选择方法的有效性,且具有易操作、计算量小等优点。最后,将此方法应用到家庭商业健康保险数据的实证分析,研究不同分位数水平下家庭健康保险参保比例的影响因素,得到了许多有意义的研究结果。 According to the features of the proportional data taken values on the closed interval[0,1]for the household coverage rate of commercial health insurance,in this paper,the Bayesian quantile regression modeling method is investigated for proportional response data based on the Tobit model.By introducing the“spike-and-slab”prior distributions of coefficients,the threshold rule-based Bayesian variable selection method is proposed by applying the EM algorithm.Extensive numerical simulation studies are used to verify the effectiveness of the proposed Bayesian variable selection method,and it has many merits such as easy implementation and cheap computation.Finally,the newly proposed method is applied to analyze the household coverage rate of commercial health insurance data,the influence factors of the coverage rate of commercial health insurance are uncovered at different quantile levels and some interesting results are gotten.
作者 赵为华 王玲 程喆 张日权 ZHAO Wei-hua;WANG Ling;CHENG Zhe;ZHANG Ri-quan(SchoolofSciences,Nantong University,Jiangsu Nantong 226019»China;School of Statistics,East China Normal University,Shanghai 200241,China)
出处 《中国管理科学》 CSSCI CSCD 北大核心 2022年第4期63-73,共11页 Chinese Journal of Management Science
基金 国家社会科学基金资助项目(15BTJ027) 国家自然科学基金资助项目(11971171)。
关键词 比例数据 Tobit分位数回归 贝叶斯变量选择 “Spike-and-Slab”先验 EM算法 proportional data tobit quantile regression Bayesian variable selection “Spike-and-slab”prior EM algorithm
  • 相关文献

参考文献7

二级参考文献69

  • 1McCullagh P, Nelder J A. Generalized Linear Models, 2nd ed. London: Chapman and Hall, 1989.
  • 2J?rgensen B. The Theory of Dispersion Models. London: Chapman and Hall, 1997.
  • 3Fisher R A. Dispersion on a sphere. Proc R Soc Ser A Math Phys Eng Sci, 1953, 217: 295–305.
  • 4Nelder J A, Wedderburn R W M. Generalized linear models. J Roy Statist Soc Ser A, 1972, 135: 370–384.
  • 5Barndorff-Nielsen O E, J?rgensen B. Some parametric models on the simplex. J Multivariate Anal, 1991, 39: 106–116.
  • 6Song P X-K, Qiu Z, Tan M. Modeling heterogeneous dispersion in marginal simplex models for continuous longitudinal proportional data. Biom J, 2004, 46: 540–553.
  • 7Mead R. A Generalised logit-normal distribution. Biometrics, 1965, 21: 721–732.
  • 8Aitchison J. The Statistical Analysis of Compositional Data. London: Chapman and Hall, 1986.
  • 9Ferrari S L P, Cribari-Neto F. Beta regression for modelling rates and proportions. J Appl Stat, 2004, 31: 799–815.
  • 10Cribari-Neto F, Zeileis A. Beta regression in R. J Stat Softw, 2010, 34: 1–24.

共引文献37

同被引文献19

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部