期刊文献+

高阶复线性微分方程整函数解的Borel方向

Borel direction of integral function solutions for higher order complex linear differential equations
下载PDF
导出
摘要 利用Nevanlinna角域值分布理论,研究了线性微分方程f^((n))+A_(n-1)f^((n-1))+…+A_(1)f′+A_(0)f=F的解f(z)的Borel方向的存在性与F(z)的Borel方向的关系,其中A_(0),A_(1),…,A_(n-1)是有限级整函数,F(z)是超越整函数。证明了线性微分方程f^((n))+e^(c_(n-1)z)f^((n-1))+…+e^(c_(n)z)f′+e^(c_(0)z)f=0的非零解f(z)的Borel方向测度有下界。 Using Nevanlinna angle domain value distribution theory,we explored the relationship between the existence of the Borel direction of the solution f(z)for linear differential equation f^((n))+A_(n-1)f^((n-1))+…+A_(1)f′+A_(0)f=F and the Borel direction of F(z),where A_(0),A_(1),…,A_(n-1) are integral functions of finite order and F(z)are transcendental integral functions.And we proved that the Borel direction measure of the nonzero solution f(z)of the linear differential equation f^((n))+e^(c_(n-1)z)f^((n-1))+…+e^(c_(n)z)f′+e^(c_(0)z)f=0 has a lower bound.
作者 李静静 黄志刚 LI Jingjing;HUANG Zhigang(School of Mathematical Sciences,SUST,Suzhou 215009,China)
出处 《苏州科技大学学报(自然科学版)》 2022年第2期9-14,共6页 Journal of Suzhou University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(11001057)。
关键词 BOREL方向 整函数 线性微分方程 测度 Borel direction entire functions linear differential equation measure
  • 相关文献

参考文献5

二级参考文献40

  • 1WU SHENGJIAN(Department of Mathematics, Beijing University,BeiJing 100871, China.).DISTRIBUTION OF THE (0,∞) ACCUMULATIVE LINES OF MEROMORPHHIC FUNCTIONS[J].Chinese Annals of Mathematics,Series B,1994,15(4):453-462. 被引量:1
  • 2Hayman W. Meromorphic function [ M ]. Oxford : Claren- don Press, 1964.
  • 3Wu Shengjian. On the location of zeros of solution off" + Af= 0 where A (z) is entire [ J ]. Math Scand, 1994,74 (2) :293-312.
  • 4Laine I, Wu Shengjian. Removable sets in the oscillation theroy of complex differential equations [ J ]. Math Anal Appl, 1997,214 ( 1 ) : 233-244.
  • 5Gundersen G G. Finite order solutions of second order lin- ear differential equations [ J ]. Trans Amer Math Soc, 1988,305( 1 ) :415-429.
  • 6Hellenstein S, Miles J, Rossi J. On the growth of solutions off" +gf +h f=0 [J]. Trans Amer Math Soc,1991,324 (2) :693-706.
  • 7Wu Shengjian. On the growth of solution of second order linear differential equation in an angle [ J ]. Complex Vari- ables, Theory and Application, 1994,24 (3/4) :241-248.
  • 8Valiron G. Recherches sur le theoreme de M. Borel dans la theorie des fonctions meromorphes [ J ]. Aca Math, 1929, 52( 1 ) :67-92.
  • 9Goldberg A A, Ostrovskii I V. The distribution of values of meromorphic functions [ M ]. Moscow : Izdat Nauk, 1970.
  • 10Nevannlinna R H. Uber die eigenschaften meromorpher funktionen in einem winkelraum [ J ]. Acta Soc Sci Fenn, 1925,50(12) :1-45.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部