期刊文献+

结合EMD和LSF的振动信号降噪方法的研究 被引量:8

Noise Reduction Method of Vibration Signal Combining EMD and LSF
下载PDF
导出
摘要 针对原始振动加速度信号中存在的低频趋势项信号在通过数学积分变换时存在严重失真的问题,提出了采用最小二乘法(least squares fit,简称LSF)和经验模态分解(empirical mode decomposition,简称EMD)相结合的方法,实现过滤原始信号中干扰信号的目的。该方法通过对经验模态分解得到的固有模态函数(intrinsic mode function,简称IMF)去除趋势项后进行重构以达到信号降噪的目的。采用该方法分别对模拟信号和某型号干式真空泵的振动实测数据进行了降噪处理,再进行信号积分变换,通过对比证明了该方法能够弥补单一方法在处理信号低频趋势项时的不足,提高了振动信号分析的可靠性。 In view of the serious distortion of the low frequency trend term signal in the original vibration acceleration signal when it is transformed by mathematical integration,a method combining least squares fit(LSF)and empirical mode decomposition(EMD)is proposed to filter the interference signal in the original signal. In this method,the intrinsic mode function(IMF)obtained from empirical mode decomposition is reconstructed after removing the trend term to achieve the purpose of signal noise reduction. The method is used to reduce the noise of the analog signal and the vibration data of a certain type of dry vacuum pump,and then the signal integral transformation is carried out. The comparison shows that this method can make up for the deficiency of single method in processing low frequency trend term of signal. It improves the reliability of vibration signal analysis and provides a good foundation for further research on fault monitoring and diagnosis of dry vacuum pump.
作者 赵博 李鹤 ZHAO Bo;LI He(School of Mechanical Engineering and Automation,Northeastern University Shenyang,110819,China)
出处 《振动.测试与诊断》 EI CSCD 北大核心 2022年第3期606-610,624,共6页 Journal of Vibration,Measurement & Diagnosis
基金 国家自然科学基金资助项目(51675091)。
关键词 经验模态分解 最小二乘法 固有模态函数 干式真空泵 振动信号 empirical mode decomposition least squares fit intrinsic mode function dry vacuum pump vibration signal
  • 相关文献

参考文献3

二级参考文献32

  • 1刘慧婷,张旻,程家兴.基于多项式拟合算法的EMD端点问题的处理[J].计算机工程与应用,2004,40(16):84-86. 被引量:121
  • 2杨建文,贾民平.希尔伯特-黄谱的端点效应分析及处理方法研究[J].振动工程学报,2006,19(2):283-288. 被引量:41
  • 3李常有,徐敏强,郭耸.基于改进的Hilbert-Huang变换的滚动轴承故障诊断[J].振动与冲击,2007,26(4):39-41. 被引量:18
  • 4郑天翔,杨力华.经验模式分解算法的探讨和改进[J].中山大学学报(自然科学版),2007,46(1):1-6. 被引量:27
  • 5沈路 周晓军 张文斌 等.基于形态滤波与灰色关联度的滚动轴承故障诊断.振动与冲击,2009,(11):25-28.
  • 6Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceeding of the Royal Society of London Series A, 1998(454"), 903-995.
  • 7Rilling G, Flandrin P, Goncalyes P. On empirical mode decomposition and its algorithms [C]// IEEE- EURASIP Workshopon Nonlinear Signal and Image Processing (NSIPL2003). Grado : [-s. n.],2003 : 8-11.
  • 8Chen Qiuhui,Huang N E,Riemenschneider S,et al. A B-spline approach for empirical mode decomposition [J]. Advances in Computational Mathematics, 2006 (24) :171-195.
  • 9Cao Lijuan,Tay F E H. Support vector machine with adaptive parameters in financial time series forecasting [J]. IEEE Transactions on Neural Networks, 2003, 14(6): 1506-1518.
  • 10Huang N E,Shen Z, Long S R,et al. The empiricalmode decomposition and the Hilbert spectrum for non-linear and nonstationary time series analysis[J], Pro-ceeding of Royal Society London A, 1998(454) : 903-995.

共引文献96

同被引文献82

引证文献8

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部