期刊文献+

植物环状RNA研究进展 被引量:2

Progress in circular RNAs of plants
原文传递
导出
摘要 随着高通量测序技术的发展,环状RNA (circular RNA, circRNA)逐渐成为非编码RNA研究领域的热点。CircRNA是由3′端下游供体和5′端上游受体经反向剪接形成的共价闭合环状分子,普遍存在于真核生物中。CircRNA过去被认为是错误剪接的副产物,近年来相关研究爆炸式增长,才将这种错误概念推翻。相较于动物中的大量研究,植物circRNA的研究还处于起步阶段。文中从植物circRNA的发现引入,总结了植物circRNA的环化特征、表达特异性、保守性和稳定性等特征;关注了circRNA的鉴定工具、主要类型和生成机制;归纳了植物circRNA作为microRNA(miRNA)海绵和翻译模板的潜在功能,以及在生物/非生物胁迫应答中的重要作用;简单概括了植物circRNA的降解与定位。最后讨论了植物circRNA研究存在的问题并对进一步开展植物circRNA研究进行了展望。 With the development of high-throughput sequencing technology, circular RNAs(circRNAs)have gradually become a hotspot in the research on non-coding RNA. CircRNAs are produced by the covalent circularization of a downstream 3′ splice donor and an upstream 5′ splice acceptor through backsplicing, and they are pervasive in eukaryotic cells. CircRNAs used to be considered byproducts of false splicing, whereas an explosion of related studies in recent years has disproved this misconception.Compared with the rich studies of circRNAs in animals, the study of circRNAs in plants is still in its infancy.In this review, we introduced the discovery of plant circRNAs, the discovery of plant circRNAs, the circularization feature, expression specificity, conservation, and stability of plant circRNAs and expounded the identification tools, main types, and biogenesis mechanisms of circRNAs. Furthermore, we summarized the potential roles of plant circRNAs as microRNA(miRNA) sponges and translation templates and in response to biotic/abiotic stress, and briefed the degradation and localization of plant circRNAs. Finally, we discussed the challenges and proposed the future directions in the research on plant circRNAs.
作者 常珍珍 龚桂芝 彭祝春 杨程 洪棋斌 CHANG Zhenzhen;GONG Guizhi;PENG Zhuchun;YANG Cheng;HONG Qibin(Citrus Research Institute,Southwest University,Chongqing 400712,China)
出处 《生物工程学报》 CAS CSCD 北大核心 2022年第5期1706-1723,共18页 Chinese Journal of Biotechnology
基金 国家重点研究发展计划(2019YFD1001402) 国家科技支撑计划(2013BAD02B02)。
关键词 环状RNA 生成机制 反向剪接 miRNA海绵 circular RNAs biogenesis mechanism backsplicing miRNA sponge
  • 相关文献

参考文献9

二级参考文献48

  • 1Baniwal, S.K., Bharti, K., Chan, K.Y., Fauth, M., Ganguli, A., Kotak, S., Mishra, $.K., Nover, L., Port, M., Scharf, K.D., et al. (2004). Heat stress response in plants: a complex game with chaper- ones and more than twenty heat stress transcription factors. J. Biosci. 29, 471-487.
  • 2Bharti, K., Von KoskulI-Dbring, R, Bharti, S., Kumar, R, Tintschl- Kbrbitzer, A., Treuter, E., and Nover, L. (2004). Tomato heat stress transcription factor HsfB 1 represents a novel type of gen- eral transcription coactivator with a histone-like motif interact- ing with the plant CREB binding protein ortholog HACl. Plant Cell. 16, 1521-1535.
  • 3Burd, C.G., and Dreyfuss, G. (1994). Conserved structures and diversity of functions of RNA-binding proteins. Science. 265, 615-621.
  • 4Busch, W., Wunderlich, M., and Sch6ffl, F. (2005). Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsb thaliana. Plant J. 41, 1-14.
  • 5Chekanova, J.A., Dutko, J.A., Mian, I.S., and Belostotsky, D.A. (2002). Arabidopsis thaliana exosome subunit AtRrp4p is a hydrolytic 3'->5' exonuclease containing S1 and KH RNA- binding domains. Nucleic Acids Res. 30, 695-700.
  • 6Chen, H., Hwang, J.E., Lim, C.J., Kim, D.Y., Lee, S.Y., and Lim, C.O. (2010). Arabidopsis DREB2C functions as a transcriptional activator of HsfA3 during the heat stress response, Biochem. Biophys. Res. Commun. 401,238-244.
  • 7Cheng, Y., Kato, N., Wang, W., Li, J., and Chen, X. (2003). Two RNA binding proteins, HEN4 and HUA1, act in the processing of AGAMOUS pre-mRNA in Arabidopsis thaliana. Dev. Cell. 4, 53-66.
  • 8Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-745.
  • 9Hsu, S.E, Lai, H.C., and Jinn, T.L. (2010). Cytosol-localized heat shock factor-binding protein, AtHSBP, functions as a nega- tive regulator of heat shock response by translocation to the nucleus and is required for seed development in Arabidopsis. Plant Physiol. 153, 773-784.
  • 10Ikeda, M., Mitsuda, N., and Ohme-Takagi, M. (2011). Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat- inducible Hsfs but positively regulate the acquired thermotol- erance. Plant Physiol. 157, 1243-1254.

共引文献328

同被引文献28

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部