期刊文献+

基于客户行为数据卷烟推荐算法设计 被引量:2

下载PDF
导出
摘要 为推动河南烟草商业数字化转型,提升资源要素配置效率,本文以客户行为数据为分析对象,构建卷烟推荐算法。首先阐述推荐技术的分类和特点,论述协同过滤算法的实现路径和基本原理,以零售客户卷烟推荐为场景,从数据获取、相似度计算、生成推荐策略、结果修正等方面论述基于用户的协同过滤推荐算法(UserCF)和基于项目的协同过滤推荐算法(ItemCF)构建过程,论证相似度系数对算法“马太效应”的影响,通过复杂度分析得出ItemCF在扩展性方面优于UserCF的推论,通过编程和离线实验,验证推论的正确性、算法的可行性,揭示推荐结果的流行度、覆盖率与邻居数量k的关系。
作者 张晓博
出处 《合作经济与科技》 2022年第13期89-91,共3页 Co-Operative Economy & Science
  • 相关文献

参考文献1

二级参考文献20

  • 1陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 2Goldberg D,Nichols D,Oki B,Terry D.Using collaborative filtering to weave an information tapestry.Communications of the ACM,1992,35(12):61-70.
  • 3Resnick P,Iacovou N,Suchak M,Bergstorm P,Riedl J.GroupLens:An open architecture for collaborative filtering of netnews//Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work.Chapel Hill,North Carolina,United States,1994:175-186.
  • 4Shardanand U,Maes P.Social information filtering:Algorithms for automating "word of mouth"//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.Denver,Colorado,United States,1995:210-217.
  • 5Hill M,Stead L,Furnas G.Recommending and evaluating choices in a virtual community of use//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.Denver,Colorado,United States,1995:194-201.
  • 6Sarwar B M,Karypis G,Konstan J A,Riedl J.Application of dimensionality reduction in recommender system-A case study//Proceedings of the ACM WebKDD Web Mining for E-Commerce Workshop.Boston,MA,United States,2000:82-90.
  • 7Massa P,Avesani P.Trust-aware collaborative filtering for recommender systems.Lecture Notes in Computer Science,2004,3290:492-508.
  • 8Vincent S-Z,Boi Faltings.Using hierarchical clustering for learning the ontologies used in recommendation systems//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Jose,California,United States,2007:599-608.
  • 9Park S-T,Pennock D M.Applying collaborative filtering techniques to movie search for better ranking and browsing//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Jose,California,United States,2007:550-559.
  • 10Tomoharu I,Kazumi S,Takeshi Y.Modeling user behavior in recommender systems based on maximum entropy//Proceedings of the 16th International Conference on World Wide Web.Banff,Alberta,Canada,2007:1281-1282.

共引文献216

同被引文献3

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部