期刊文献+

Highly permeable reverse osmosis membranes incorporated with hydrophilic polymers of intrinsic microporosity via interfacial polymerization

下载PDF
导出
摘要 Enhancing the water permeation while maintaining high salt rejection of existing reverse osmosis(RO)membranes remains a considerable challenge.Herein,we proposed to introduce polymer of intrinsic microporosity,PIM-1,into the selective layer of reverse osmosis membranes to break the trade-off effect between permeability and selectivity.A water-soluble a-LPIM-1 of low-molecular-weight and hydroxyl terminals was synthesized.These designed characteristics endowed it with high solubility and reactivity.Then it was mixed with m-phenylenediamine and together served as aqueous monomer to react with organic monomer of trimesoyl chloride via interfacial polymerization.The characterization results exhibited that more“nodule”rather than“leaf”structure formed on RO membrane surface,which indicated that the introduction of the high free-volume of a-LPIM-1 with three dimensional twisted and folded structure into the selective layer effectively caused the frustrated packing between polymer chains.In virtue of this effect,even with reduced surface roughness and unchanged layer thickness,the water permeability of prepared reverse osmosis membranes increased 2.1 times to 62.8 L·m^(-2)·h^(-1) with acceptable Na Cl rejection of 97.6%.This attempt developed a new strategy to break the trade-off effect faced by traditional polyamide reverse osmosis membranes.
出处 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第5期194-202,共9页 中国化学工程学报(英文版)
基金 supported by Zhejiang Provincial Natural Science Foundation of China (LZ20B060001) National Natural Science Foundation of China (22008208&21908192) China Postdoctoral Science Foundation (2019TQ0276)。
  • 相关文献

参考文献4

二级参考文献8

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部