摘要
针对一类线性随机系统,研究了其微小传感器故障检测问题.基于Kalman滤波算法构造状态估计器,利用移动加权平均方法设计残差与评价函数.根据非中心卡方分布的性质,分析了故障幅值、窗口长度、误报率和漏报率之间的关系.采用不等式技术,得到了确保在统计意义下微小故障可检测性的最优权值和最小窗口长度.最后,通过一个仿真实例验证了所提方法的有效性.
In this paper,the problem of incipient sensor fault detection is investigated for linear stochastic systems.The state estimator is constructed by using the Kalman filtering algorithm.Then,the residual and the evaluation function are designed by means of the weighted moving average method.According to the property of the non-centralχ~2 distribution,the relationships among the fault amplitude,the window length,the false alarm rate and the missed detection rate are analyzed.By using the inequality technique,the optimal weights and the minimum window length,which ensure the detectability of incipient faults in a probabilistic sense,are derived.Finally,an illustrative example is provided to verify the effectiveness of the proposed method.
作者
牛艺春
刘诗洋
高明
盛立
NIU Yi-chun;LIU Shi-yang;GAO Ming;SHENG Li(College of Control Science and Engineering,China University of Petroleum(East China),Qingdao Shandong 266580,China)
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2022年第5期879-886,共8页
Control Theory & Applications
基金
国家自然科学基金项目(62173343,62073339,62033008)
山东省自然科学基金项目(ZR2020YQ49)资助。
关键词
随机系统
微小故障检测
可检测性分析
移动加权平均方法
stochastic systems
incipient fault detection
detectability analysis
weighted moving average method