摘要
针对独居老人室内行为及异常行为监测,开发出一款基于方位感知的老人居家行为监测系统,并将该系统应用于生活场景.该系统首先以舵机为原点,建立室内方位坐标系,将室内划分为不同的兴趣区域;然后通过WiFi连接树莓派、摄像头、舵机,编写Python程序实现摄像头自动目标搜索以及人脸识别、定位功能;同时,根据人脸识别结果,记录舵机方位、视频以及老人驻留热点区域的时间;最后根据上述监测方位和时间信息,分析老人的室内行为,进行异常行为判断,并发送提醒邮件.实测结果结果表明,监测系统能够实时采集目标的视频和方位信息,分析老人行为状态,并对异常行为发送邮件预警.此外,该系统便于实现,能够提供丰富的历史数据,具有实际的应用价值和良好的应用前景.
For the monitoring of indoor behaviors and abnormal behaviors of the elderly living alone, a home behavior monitoring system based on orientation perception is developed and applied in real life. First, this system takes the rudder as the origin, establishes the indoor coordinate system, and divides the indoor area into different interest areas. Then, it connects the Raspberry Pi, camera, and rudder by WiFi, and Python programs are developed to execute the automatic target search of the camera, face recognition, and target location. In the meanwhile, the rudder position, video, and the residence time of the elderly in hot spots are recorded according to the results of face recognition. Finally, on the basis of the above orientation and time information, we analyze the indoor behaviors of elderly people, make abnormal behavior judgment, and send an e-mail alert. The real-test results show that the monitoring system can collect video and orientation information of a target in real time, analyze the target behavior status, and send an e-mail alert in view of the abnormal behavior of the target. In addition, the system is easy to implement and provides rich historical data. Hence, it has practical application value and good application prospect.
作者
邱云明
甘倬溢
范恩
罗旭
刘晶
汪子涵
QIU Yun-Ming;GAN Zhuo-Yi;FAN En;LUO Xu;LIU Jing;WANG Zi-Han(College of Physics and Optoelectronic Engineering,Shenzhen University,Shenzhen 518061,China;Computer Science and Engineering Department,Shaoxing University,Shaoxing 312000,China)
出处
《计算机系统应用》
2022年第6期125-131,共7页
Computer Systems & Applications
基金
浙江省公益技术应用研究项目(LGG22F010004)
国家自然科学基金青年项目(62002227)
浙江省大学生科技创新活动计划(2021R432015)
绍兴文理学院科研启动项目(20205048)。
关键词
方位感知
独居老人
人脸识别
异常行为预警
驻留时间
深度学习
oriention perception
elderly people living alone
face recognition
abnormal behavior alert
residence time
deep learning