期刊文献+

下肢外骨骼人机耦合交互力特性分析

Characteristic Analysis on Human-Machine Interaction Force of Lower Limb Exoskeleton
下载PDF
导出
摘要 目的提出一种基于虚拟肌肉的人机耦合动力学建模方法,对穿戴外骨骼步行过程的人机交互力及穿戴者肌骨系统的肌肉激活情况等特征进行量化分析。方法首先在穿戴外骨骼的步态实验中,利用人体动作捕捉系统和自行开发的力学监测装置,同步获取穿戴者步行动力学、肌电信号、外骨骼驱动状态及局部的法向人机交互力信息;然后,在肌骨系统建模环境中建立人机耦合模型,并以步态实验数据和外骨骼关节扭矩作为耦合模型的驱动信息,进行逆动力学计算;最后,对模型的仿真数据与实验测试结果进行对比,量化评估下肢外骨骼人机耦合模型的有效性。结果耦合模型逆动力学计算的法向交互力以及下肢肌肉激活情况与步态实验测量结果相比,在响应曲线趋势上均具有良好一致性,其中交互力结果具有高程度的相关性(r=0.931,P<0.01),均方根误差较小,下肢肌肉激活程度峰值误差均小于5%。结论本文提出的人机耦合模型可有效计算人与外骨骼交互力。该耦合模型的建立为以后外骨骼结构优化与控制算法的验证与迭代,以及外骨骼助行助力功效的性能评估提供理论依据。 Objective To propose a human-machine coupling dynamics modeling method based on virtual muscles,so as to quantitatively analyze the characteristics of human-computer interaction force and muscle activation of the musculoskeletal system.Methods First,in the gait experiment of wearing exoskeleton,the human motion capture system and self-developed mechanical monitoring device were used to obtain the wearer’s walking dynamics,electromyography(EMG)signals,exoskeleton drive status and local human-computer interaction information.The human-machine coupling model was established in modeling environment of the bone system,and the gait experiment data and the exoskeleton joint torques were used as driving information of the coupling model to perform inverse mechanical calculations.Finally,by adjusting strength and stiffness parameters of the virtual muscles,the real data of the model was compared with the experimental test result,to quantitatively evaluate effectiveness of the human-machine coupling model of the lower extremity exoskeleton.Results The normal interaction force calculated by inverse dynamics of the coupled model and the activation of lower limb muscles had a good consistency in response curve trend compared with measurement results of the gait experiment,and the interaction force results had a high degree of correlation(r=0.931,P<0.01),the root mean square error was small,and the peak error of lower limb muscle activation was lower than 5%.Conclusions The human-machine coupling model proposed in this study can effectively calculate the interaction force between human and exoskeleton.The establishment of the coupling model provides a theoretical basis for verification and iteration of the exoskeleton structure optimization and control algorithm,as well as performance evaluation on mobility assistance effects of the exoskeleton.
作者 周泽世 朱钧 朱云超 张鑫彬 陈文明 马昕 ZHOU Zeshi;ZHU Jun;ZHU Yunchao;ZHANG Xinbin;CHEN Wenming;MA Xin(Academy for Engineering and Technology,Fudan University,Shanghai 200433,China;Shanghai Aerospace Control Technology Institute,Shanghai 200233,China;Department of Foot and Ankle Surgery,Huashan Hospital,Fudan University,Shanghai 200040,China)
出处 《医用生物力学》 CAS CSCD 北大核心 2022年第2期305-311,共7页 Journal of Medical Biomechanics
基金 国家自然科学基金青年基金项目(51905104)。
关键词 下肢外骨骼 耦合仿真 步态 lower limb exoskeleton coupling simulation gait
  • 相关文献

参考文献4

二级参考文献192

  • 1邓国勇,田联房,陈艺,白波.基于关节机器人的人体脊柱生物力学试验装置设计[J].医用生物力学,2008,23(6):446-453. 被引量:8
  • 2归丽华,杨智勇,顾文锦,张远山,杨秀霞.能量辅助骨骼服NAEIES的开发[J].海军航空工程学院学报,2007,22(4):467-470. 被引量:28
  • 3雷兵.协行助力机械腿结构优化及性能评估系统研究[D].上海:华东理工大学,2011.
  • 4Zoss AB, Kazerooni H, Chu A. Biomechanical design ofthe Berkeley lower extremity exoskeleton [ J]. IEEE-ASMETMech’2006,11(2) : 128-138.
  • 5Goodrich M A, Schultz A C. Human-robot interaction: a survey. Foundations and Trends in Human-Computer Inter- action, 2007, 1(3): 203-275.
  • 6Nam Y, Koo B, Cichocki A, Choi S. GOM-face: GKP, EOG, and EMG-based multimodal interface with application to humanoid robot control. IEEE Transactions on BiomedicM Engineering, 2014, 61(2): 453-462.
  • 7Artemiadis P. EMG-based robot control interfaces: past present and future. Advances in Robotics ~z Automation 2012, 1(2): 1-3.
  • 8Ngeo J G, Tamei T, Shibata T. Continuous and simul- taneous estimation of finger kinematics using inputs from an EMCl-to-muscle activation model. Journal of NeuroEngi- neering and Rehabilitation, 2014, 11:122.
  • 9Chowdhury R H, Reaz M B I, Ali M A B, Bakar A A A, Chellappan K, Chang T G. Surface electromyography sig- nal processing and classification techniques. Sensors, 2013, 13(9): 12431-12466.
  • 10Ahsan M R, Ibrahimy M I, Khalifa O O. EMG signal classifi- cation for human computer interaction: a review. European Journal of Scientific Research, 2009, 33(3): 480-501.

共引文献190

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部