摘要
差异化和精细化的公交服务要求城市管理者和公交运营者加深对公交出行变异性的认识。本文将公交惯常出行定义为乘客个体多次在同一时段或空间乘坐公交的行为,随机出行的定义与之相反。利用厦门市30天连续的常规公交数据,使用DBSCAN算法对出行天数在10天以上的高频乘客进行划分,用核心点来表征惯常出行,用非核心点来表征随机出行。结果表明有78.70%的出行在时间上具有稳定性,有72.32%的出行在空间上具有稳定性。研究结论凸显了公交高频乘客也具有随机出行,且随机出行的统计特征和时空分布与惯常出行有较大差异。研究结论可以应用于个体时空模式挖掘、乘客人群划分、定制公交线路制定、公交差异化服务设置等方面。
Differentiated and refined public transport services require city managers and bus operators to deepen their understanding of the variability of bus travel.We define bus habitual travels of public transport as the behavior of individual bus passenger to take public transportation of multiple times at the similar time or space,and occasional travels are defined as the opposite.In this paper,during 30 consecutive days in Xiamen City,DBSCAN algorithm was used to divide the travels of high-frequency passengers who travel by bus for more than 10 days.Core points of bus travels stand for habitual travels,while non-core points of bus travels stand for occasional travels.The results showed that 78.70 percent of travels are stable in temporal distribution,at the meanwhile,72.32 percent of travels are stable in spatial distribution.The conclusion highlights that there are also occasional travels of high-frequency bus passengers quite different from habitual travels not only in statistical characteristics but also in spatio-temporal distribution.The achievements can be applied to the excavation of individual spatio-temporal patterns,the clustering of passengers,the formulation of customized bus lines,and the ordering of differentiated services for public transportation.
作者
李哲
李玮峰
LI Zhe;LI Weifeng(The Key Laboratory of Road and Traffic Engineering of the Ministry of Education,Tongji University,Shanghai 201804,China)
出处
《综合运输》
2022年第5期66-73,共8页
China Transportation Review
基金
国家重点研发计划:城市交通“状态迁移-态势演化”的敏捷预测与可靠推演(2018YFB1601100)
福建省交通运输科技项目:轨道交通运营初期厦门市公共交通客流动态监测与出行特征分析(2017Y062)。
关键词
公交大数据
时空分布
DBSCAN算法
惯常出行
随机出行
Bus big data
Spatio-temporal distribution
DBSCAN algorithm
Habitual travel
Occasional travel