期刊文献+

基于PSO-SVM的车载ATC设备故障诊断 被引量:3

PSO-SVM-based fault diagnosis of vehicle ATC equipment
下载PDF
导出
摘要 地铁列车车载自动控制系统(Automatic Train Control,ATC)设备的故障排查诊断大多依赖人工经验,存在效率低下问题.针对车载ATC设备的故障诊断问题,采用一种基于粒子群算法优化支持向量机(Particle Swarm Optimization-Support Vector Machine,PSO-SVM)的地铁列车车载ATC设备故障诊断方法 .根据历史故障数据记录表得到故障特征词汇集,引入粗糙集理论的知识对故障特征词汇集进行属性约简.利用PSO-SVM算法对约减后的故障特征词汇集进行分类对比,实验结果表明:在相同训练测试集下,PSO-SVM算法相对于SVM、神经网络算法具有更高的故障诊断准确率,并且更具稳定性. Most of the troubleshooting and diagnosis of Automatic Train Control(ATC) equipment on subway trains rely on experience of staffs, which is inefficient upon opearation. Aiming at the fault diagnosis problem of onboard ATC equipment, a fault diagnosis method for ATC equipment on subway train based on Particle Swarm Optimization-Support Vector Machine(PSO-SVM) is adopted. The knowledge of rough set theory is adopted to reduce the attributes of the fault data feature set, the fault feature set is obtained according to the historical fault data record table. The PSO-SVM algorithm is used to classify and compare the historical fault data feature set. The experimental results show that under the same training test set, the PSO-SVM algorithm has higher fault diagnosis accuracy and is more stable than SVM and neural network algorithms.
作者 付文秀 周晓勇 李弘扬 郭毅 FU Wenxiu;ZHOU Xiaoyong;LI Hongyang;GUO Yi(School of Electronic and Information Engineering,Beijing Jiaotong University,Beijing 100044,China;China Railway Communication and Signal Survey&Design Institute Co.Ltd.,Beijing 100071,China)
出处 《北京交通大学学报》 CAS CSCD 北大核心 2022年第2期98-107,共10页 JOURNAL OF BEIJING JIAOTONG UNIVERSITY
基金 国家自然科学基金(61673049)。
关键词 车载ATC设备 故障诊断 粗糙集 粒子群算法 支持向量机 onboard ATC equipment fault diagnosis rough set particle swarm optimization support vector machine
  • 相关文献

参考文献6

二级参考文献77

  • 1刘丽艳,王海涌,郑丽英.基于粗集理论的决策规则约简算法的研究与应用[J].兰州交通大学学报,2004,23(6):78-80. 被引量:6
  • 2郑丽英,王海涌,王霞.基于聚类和粗糙集的智能邮件过滤系统研究[J].甘肃科学学报,2005,17(1):73-76. 被引量:5
  • 3张森,肖先赐.混沌时间序列全局预测新方法——连分式法[J].物理学报,2005,54(11):5062-5068. 被引量:25
  • 4施建宇,潘泉,张绍武,梁彦.基于支持向量机融合网络的蛋白质折叠子识别研究[J].生物化学与生物物理进展,2006,33(2):155-162. 被引量:19
  • 5Isermann R, Balle E Trends in the application of model based fault detection and diagnosis of technical processes[J]. Control Engineering Practice, 1997, 5(5): 709-719.
  • 6Parthasarathy K, Jay H L. Diagnostic tools for multivariable model-based control system[J]. Industrial and Engineering Chemistry Research, 1997, 36(7): 2725- 2738.
  • 7Anne Raich, Ali Cinar. Statistical process monitoring and disturbance diagnosis in multivariable continuous processes [J]. AIChE J, 1996, 42(4): 995-1009.
  • 8Jie Chen, Ron J. Patton. Robust model-based fault diagnosis for dynamic systems[M]. Boston: Kluwer Academic Publishers, 1999.
  • 9Bagheri F, Khaloozaded H, Abbaszadeh K. Stator fault detection in induction machines by parameter estimation using adaptive Kalman filter[C]. Proc of 2007 Mediterranean Conf on Control and Automation. Piscataway: IEEE, 2007: 1-6.
  • 10Li L L, Zhou D H. Fast and robust fault diagnosis for a class of nonlinear system: Detectability analysis[J]. Computers and Chemical Engineering, 2004, 28(12): 2635-2646.

共引文献297

同被引文献25

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部