期刊文献+

基于TextCNN的文本情感分类系统 被引量:11

Text sentiment classification system based on TextCNN
下载PDF
导出
摘要 通过分析用户在线评论的文本信息来预测消费者的网购偏好意愿,进而提高消费者的满意度成为众多企业的需求.但庞大的评论数据量使得人工手动对评论文本进行分类打标签难以实现,结合Word2vec和TextCNN模型实现对在线评论进行文本情感分类.对评论文本进行规格化处理,通过结巴分词库等对已处理数据进行分词,即提取关键字词.使用Word2vec工具对每个分词进行词向量的训练,得到word embedding权重矩阵作CNN模型的嵌入层,采用TextCNN模型训练得到本文的情感分类模型.相比于直接用传统的卷积神经网络CNN默认的词嵌入层,本文训练出来的神经网络模型效果更佳. It had become the demand of many companies to predict consumers′ online shopping preferences by analyzing the text information of users’ online comments, and thereby improved consumer satisfaction. However, the huge amount of comment data made it difficult to manually classify and label the comment text. This paper combined the Word2 vec and TextCNN models to implement text sentiment classification for online comments. The comment text was normalized, and the processed data was segmented through the word segmentation database, etc., that was, the keyword words were extracted. Used the Word2 vec tool to train the word vector for each word segmentation, got the word embedding weight matrix as the embedding layer of the CNN model, used the TextCNN model to train to get the sentiment classification model of this paper. Compared to directly using the default word embedding layer of the traditional convolutional neural network CNN, the neural network model trained in this paper had a better effect.
作者 张浩然 谢云熙 张艳荣 ZHANG Hao-ran;XIE Yun-xi;ZHANG Yan-rong(School of Computer and Information Engineering,Harbin University of Commerce,Harbin 150028,China;Heilongjiang Key Laboratory of Electronic Commerce and Information Processing,Harbin University of Commerce,Harbin 150028,China)
出处 《哈尔滨商业大学学报(自然科学版)》 CAS 2022年第3期285-292,共8页 Journal of Harbin University of Commerce:Natural Sciences Edition
基金 黑龙江省哲学社会科学研究规划项目(20GLE393)。
关键词 在线评论 Word2vec TextCNN 卷积神经网络 文本情感分 online reviews Word2vec TextCNN CNN text sentiment classification
  • 相关文献

参考文献17

二级参考文献130

  • 1刘正光.反语理论综述[J].解放军外国语学院学报,2002,25(4):16-20. 被引量:36
  • 2涂靖.反讽的语用特征和限制条件[J].外语学刊,2002(1):77-81. 被引量:21
  • 3易勇,何中市,李良炎,周剑勇,瞿义玻.基于遗传算法改进诗词风格判别的研究[J].计算机科学,2005,32(7):156-158. 被引量:6
  • 4朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 5姚天防,聂青阳,李建超,等.一个用于汉语汽车评论的意见挖掘系统[c]//中文信息处理前沿进展一中国中文信息学会二十五周年学术会议论文集.北京:清华大学出版社,2006,260-281.
  • 6徐琳宏,林鸿飞,赵晶.情感语料库的构建和分析[J].中文信息学报,2008,22(1):116-122. 被引量:111
  • 7Baeza-Yates R,Ribeiro-Neto B.Modern Information Retrieval[M].New York:ACM press,1999.
  • 8Manning C D,Schütze H.Foundations of Statistical NaturalLanguage Processing [M].Cambridge:MIT press,1999.
  • 9Hwang M,Choi C,Youn B,et al.Word Sense Disambiguation Based on Relation Structure[C]∥International Conference on Advanced Language Processing and Web Information Technology.2008:15-20.
  • 10Wang X,Mccallum A,Wei X.Topical N-Grams:Phrase andTopic Discovery,with an Application to Information Retrieval [C]∥IEEE International Conference on Data Mining.IEEE Computer Society,2007:697-702.

共引文献837

同被引文献59

引证文献11

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部