摘要
针对不同工况下的数据无法直接训练并用于检测的问题,提出一种基于迁移成分分析和词包模型的诊断算法,对于用作训练的有标签源域数据和用作检验诊断的无标签目标域数据。首先使用短时傅里叶变换将两者转换为频域数据,其次通过迁移成分分析将两者的频谱能量映射到同一分布以建立相应的词包模型作为数据的特征,最后在源域数据的词包模型上训练出合适的分类器从而进行诊断。在西门子SQI-MFS平台实验数据集、凯斯西储大学公开数据集及机械故障预防技术协会MFPT(machinery failure prevention technology)数据集下的实验结果表明该算法是有效的。
To solve the problem that the data under different working conditions cannot be directly trained and used for detection,a diagnosis algorithm based on transform component analysis and bag of words was proposed.For the labeled data to be used for training(called source domain data)and unlabeled data for test diagnosis(called target domain data),firstly,the two types of data were converted into frequency domain data using short-time Fourier transform.Then,the spectrum energy of the two types of data was mapped to the same distribution through transfer component analysis in order to make corresponding bag of words as a feature of the data.Finally,a suitable classifier was trained on the bag of words of the source domain data and diagnosed the target domain data with that.The experimental results under the Siemens SQI-MFS platform experimental data set,Case Western Reserve University public data set and Mechanical Failure Prevention Technology Association MFPT(machinery failure prevention technology)data set show that the algorithm is valuable.
作者
田威威
陈俊杰
林意
TIAN Weiwei;CHEN Junjie;LIN Yi(School of Artificial Intelligence and Computer Science,Jiangnan University,Wuxi 214122,Jiangsu,P.R.China;SIEMENS China Institute,Beijing 100000,P.R.China)
出处
《重庆大学学报》
CSCD
北大核心
2022年第6期98-107,共10页
Journal of Chongqing University
基金
江苏省科技计划项目(BE2018056)。
关键词
迁移成分分析
词包模型
变工况
轴承故障诊断
transform component analysis
bag of words
variable condition
bearing fault diagnosis