期刊文献+

SnS_(2)纳米颗粒/MXene复合材料的制备及其储锂性能

Synthesis and Lithium Storage Performance of SnS_(2) Nanoparticles/MXene Composite
原文传递
导出
摘要 SnS_(2)因理论储锂容量高,被认为是锂离子电池颇具应用潜力的负极材料之一,但其循环稳定性和倍率性能差。通过原位限域溶剂热法制备了SnS_(2) NPs@MXene,即SnS_(2)纳米颗粒/MXene复合材料,其中SnS_(2)纳米颗粒均匀地嵌在MXene层间,呈三明治结构。SnS_(2) NPs夹在MXene层间有利于抑制MXene的堆垛,同时缓解SnS_(2) NPs的体积应变;当用作锂离子电池负极时,SnS_(2) NPs@MXene复合电极表现出高可逆容量、强倍率性能和大电流下的长期循环稳定性:在0.1 A·g^(-1)的电流密度下循环200圈后,可逆容量为931 mAh·g^(-1);在5 A·g^(-1)的电流密度下,可逆容量高达566.5 mAh·g^(-1);在2 A·g^(-1)的电流密度下循环2000圈后,可逆容量保持在646 mAh·g^(-1)。具有重要意义的是,合成SnS_(2)纳米颗粒/MXene复合材料的方法同样适用于其他二维层状金属硫化物纳米粒子/MXene复合材料,也适用于二维层状金属硫化物纳米粒子/二维材料的合成。 SnS_(2) is considered as one of the most potential anode materials due to its high theoretical lithium storage capacity,but with poor cycle stability and rate performance.SnS_(2) nanoparticles/MXene composite(SnS_(2) NPs@MXene)was prepared by an in-situ confinement solvothermal method,in which SnS_(2) nanoparticles are uniformly embedded in the MXene layers in a sandwich structure.SnS_(2) NPs sandwiched between MXene can inhibit the stacking of MXene and relieve the volume strain of SnS_(2) NPs.As an anode of lithium-ion batteries,SnS_(2) NPs@MXene composite electrode has high reversible capacity,excellent rate performance and long-term cycling stability under high current density.The reversible capacity is 931 mAh·g^(-1)after 200 cycles at a current density of 0.1 A·g^(-1).The reversible capacity is as high as 566.5 mAh·g^(-1)at a current density of 5 A·g^(-1).The reversible capacity remains at 646 mAh·g^(-1)at 2 A·g^(-1)after 2000 cycles.It is of great significance that the synthesis method of SnS_(2) nanoparticles/MXene composite is also applicable to other two-dimensional layered metal sulfide nanoparticles/MXene composite,as well as two-dimensional layered metal sulfide nanoparticles/two-dimensional materials.
作者 何勋 谭正洁 敖玖壹 HE Xun;TAN Zhengjie;AO Jiuyi(College of Chemistry and Chemical Engineering,China West Normal University,Nanchong 637000,China;Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province,Nanchong 637000,China)
出处 《工业技术创新》 2022年第2期9-16,共8页 Industrial Technology Innovation
基金 国家自然科学基金面上项目(21571148)。
关键词 SnS_(2)纳米颗粒 MXene 复合材料 锂离子电池 负极材料 合成方法 SnS_(2) Nanoparticles MXene Composite Lithium-Ion Batteries Anode Material Composite Method
  • 相关文献

参考文献4

二级参考文献65

  • 1Poizot, P.; Laruelle, S.; Dupont, L.; Tarascon, J. J. M. Nature 2000, 407, 496. doi: 10.1038/35035045.
  • 2Park, J. C.; Kim, J.; Kwon, H.; Song, H. Adv. Mater. 2008, 20, 1. doi: 10.1002/adma.v20:16.
  • 3Chen, J.; Xu. L. N.; Li, W. Y.; Gou, X. L. Adv. Mater. 2005, 17, 5.
  • 4Wang, B.; Wu, H. B.; Zhang, L.; Lou, X. W. Angew . Chem. Int. Edit. 2013, 52, 4165. doi: 10.1002/anie.201300190.
  • 5Zhen, F. M.; Geng, B. Y.; Gou, Y. J. Chem. Eur. J. 2009, 15, 6169. doi: 10.1002/chem.v15:25.
  • 6Manickam, S.; Nanda, G.; Masaki, Y.; Kenichi, N. Nano Energy 2012, 1, 503. doi: 10.1016/j.nanoen.2012.03.003.
  • 7Gu, Z. J.; Li, H. Q.; Zhai, T. Y.; Yang, W. S.; Xia, Y. Y.; Ma, Y.; Yao, J. N. J. Solid State Electrochem. 2007, 180, 98.
  • 8Qiu, Y. C.; Xu, G. L.; Kuang, Q.; Sun, S. G.; Yang, S. H. Nano Res. 2012, 5, 8260.
  • 9Guo, X. W.; Fang, X. P.; Sun, Y.; Shen, L. Y.; Wang, Z. X.; Chen, L. Q. J. Power Sources 2013, 226, 75. doi: 10.1016/j.jpowsour.2012.10.068.
  • 10Sun, X. L.; Wang, X. H.; Qiao, L.; Hu, D. K.; Feng, N.; Li, X. W.; Liu, Y. Q.; He, D. Y. Electrochim. Acta 2012, 66, 204. doi: 10.1016/j.electacta.2012.01.083.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部