期刊文献+

基于社交媒体的网络虚假信息发布者特征实证分析 被引量:1

Empirical Analysis of Characteristics of Disinformation Publishers Based on Social Media
下载PDF
导出
摘要 在新冠疫情重大突发事件中,相关主题的虚假信息在社交媒体平台上快速传播。发布与传播这些虚假信息的人是否具有一定的群体特征?其发布与分享是否存在一定的目的性?文章以Twitter社交媒体平台为例,选取其中COVID-19虚假信息主题,抓取相关的推文内容和发布者信息,分析发布者对虚假信息的态度及其群体偏好特征。研究发现,在发布者群体中,发布虚假信息或有目的地转发虚假信息,其群体转发的关键词集中趋势较强,主要集中在政治军事、国家感情和个人信仰等方面,而揭露虚假信息或无态度群体的关键词分布较为分散,该群体具有明显的医学知识、科学研究背景。这一研究结果有助于更好地了解虚假信息发布者的群体特征,为进一步研究虚假信息发布行为的动机、心理等提供线索;同时,有利于促进社交媒体平台更好地进行用户管理和内容管理。 During this COVID-19 pandemic,false information on coronavirus was widely dissminated on the social media platform.Do people who published and dissminated such false information have common characteristics?Is there a certain purpose in its publication and sharing?Taking social media platform‘Twitter’as an example,this paper selects one of the widely disseminated COVID-19 false information topics,extracts the tweets and publisher information,and analyzes the publishers’attitude towards false information and their characteristics.The results show that the keywords forwarded by the group who publish false information or forward it purposely are more concentrated on politics and military,national feeling and personal beliefs.The keywords forwarded by the group who expose false informationor comment nothing are relatively scattered and this group are charactered with their experience of medical and scientific research.It is helpful to understand the group characteristics of false information publishers,and provide clues for further research on the motivation and psychology of false information publishing behavior.At the same time,it is conducive to promoting user management and content management on social media platforms.
作者 莫祖英 贺雅文 刘燕权 Mo Zu Ying;He Ya Wen;Liu Yan Quan(Zhengzhou University of Aeronautics,Zhengzhou 450046,China;Southern Connnecticut State University,New Haven,CT06511)
出处 《郑州航空工业管理学院学报》 2022年第3期91-98,共8页 Journal of Zhengzhou University of Aeronautics
基金 国家社会科学基金资助项目(21BTQ049)。
关键词 网络虚假信息 发布者群体特征 社交媒体 false information on line common characteristics of the publishers social media
  • 相关文献

二级参考文献71

  • 1任一奇,王雅蕾,王国华,冯伟.微博谣言的演化机理研究[J].情报杂志,2012,31(5):50-54. 被引量:40
  • 2巢乃鹏,黄娴.网络传播中的“谣言”现象研究[J].情报理论与实践,2004,27(6):586-589. 被引量:149
  • 3Gross D. Library of Congress digs into 170 billion tweets - CNN.com[EB/OL]. bttp://edition.cnn.com/ 2013/01/07/tech/social-media/library-congress-twit- ter, 2013- 02-28.
  • 4Oghina A, Breuss M, Tsagkias M, et al. Predicting IM- Db movie ratings using social media[J]. Advances in Information Retrieval, 2012,(7): 503-507.
  • 5Bollen J, Mao H, Zeng X. Twitter mood predicts the stock market[J]. Journal of Computational Science, 2011, 2(1): 1-8.
  • 6Zhang X, Fuehres H, Gloor P A. Predicting Stock Mar- ket Indicators Through Twitter "I hope it is not as bad as I fear"[J]. Procedia-Social and Behavioral Scienc- es, 2011, (26): 55-62.
  • 7Doerr B, Fouz M, Friedrich T. Experimental Analysis of Rumor Spreading in Social Networks[J]. Lecture Notes in Computer Science, 2012,(7):159-173.
  • 8ZHANG X. Internet Rumors and Intercultural Eth- ics--A Case Study of Panic-stricken Rush for Salt in China and Iodine Pill in America After Japanese Earthquake and Tsunami[J]. Studies in Literature and Language, 2012, 4(2): 13-16.
  • 9Gilbert N, Troitzsch K. Simulation for the social scien- tist[M]. USA:Open university press, 2005:130-133.
  • 10Chierichetti F, Lattanzi S, Panconesi A. Rumor Spreading in Social Networks[J]. Theoretical Computer Science,2011,412 (24):2602-2610.

共引文献162

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部