期刊文献+

Highly efficient charging and discharging of three-level quantum batteries through shortcuts to adiabaticity

原文传递
导出
摘要 Quantum batteries are energy storage devices that satisfy quantum mechanical principles.How to improve the battery’s performance such as stored energy and power is a crucial element in the quantum battery.Here,we investigate the charging and discharging dynamics of a three-level counterdiabatic stimulated Raman adiabatic passage quantum battery via shortcuts to adiabaticity,which can compensate for undesired transitions to realize a fast adiabatic evolution through the application of an additional control field to an initial Hamiltonian.The scheme can significantly speed up the charging and discharging processes of a three-level quantum battery and obtain more stored energy and higher power compared with the original stimulated Raman adiabatic passage.We explore the effect of both the amplitude and the delay time of driving fields on the performances of the quantum battery.Possible experimental implementation in superconducting circuit and nitrogen–vacancy center is also discussed.
出处 《Frontiers of physics》 SCIE CSCD 2022年第3期101-109,共9页 物理学前沿(英文版)
基金 The work was supported by the National Natural Science Foundation of China(Grant No.12075193).
  • 相关文献

参考文献1

二级参考文献2

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部