期刊文献+

Local feature aggregation algorithm based on graph convolutional network 被引量:2

原文传递
导出
摘要 1Introduction and main contributions In the field of social networks and knowledge graphs,semi-supervised learning models based on graph convolutional networks have achieved great success in node classification[1],inductive node embedding[2],link prediction[3],and recommend.These semi-supervised models based on graph convolutional network(GCN)[4]expect to obtain more feature information of a graph or accelerate the training.
出处 《Frontiers of Computer Science》 SCIE EI CSCD 2022年第3期203-205,共3页 中国计算机科学前沿(英文版)
基金 the National Natural Science Foundation of China(Grant Nos.61272209,61872164) in part by the Program of Science and Technology Development Plan of Jilin Province of China(20190302032GX) in part by the Fundamental Research Funds for the Central Universities(Jilin University).
  • 相关文献

同被引文献4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部