期刊文献+

融合用户历史传播信息的微博谣言检测 被引量:1

Microblog Rumor Detection Integrating User’s History and Dissemination Information
下载PDF
导出
摘要 随着互联网技术的发展,以微博为主的社交媒体平台上网络谣言逐渐泛滥,研究微博谣言的自动检测对维护社会稳定具有重要意义。现今主流的基于深度学习的谣言检测方法普遍存在没有充分考虑微博文本语义信息的问题,同时,过分依赖传播信息的谣言检测方法使得检测时间滞后,不能满足谣言检测的现实需求。针对以上问题,本文提出一种融合用户历史交互信息的微博谣言检测模型,不使用待检测微博的传播信息,构建并训练Aba Net(ALBERT-BiGRU-Attention)深度学习网络模型,充分考虑待检测微博和用户历史传播信息文本的文本特征和语义信息进行谣言检测。实验结果显示,本文模型具有准确率高、稳定性强的特点,并且能够在获得较高检测精度的情况下大大缩短谣言检测的时间。 With the development of Internet technology,online rumors have gradually spread on social media platforms based on Weibo.Research on the automatic detection of Weibo rumors is of great significance to maintaining social stability.The current mainstream rumor detection methods based on deep learning generally have the problem of not fully considering the semantic information of Weibo texts.At the same time,the rumor detection methods that rely too much on dissemination of information make the detection time lag and cannot meet the actual needs of rumor detection.In response to the above problems,this paper proposes a microblog rumor detection model that integrates user historical interaction information.It does not use the dissemination information of microblogs to be detected,constructs and trains the Aba Net( ALBERT-BiGRU-Attention) deep learning network model,and fully considers the text features and semantic information of Weibo and user history dissemination information text for rumor detection.The experimental results show that the model in this paper has the characteristics of high accuracy and strong stability,and can greatly shorten the time of rumor detection while obtaining high detection accuracy.
作者 卢悦 曹春萍 LU Yue;CAO Chun-ping(School of Optical-Electrical&Computer Engineering,University of Shanghai for Science&Technology,Shanghai 200093,China)
出处 《计算机与现代化》 2022年第6期37-42,74,共7页 Computer and Modernization
基金 国家自然科学基金资助项目(71901144)。
关键词 微博谣言 谣言检测 深度神经网络 预训练 Weibo rumor rumor detection deep neural network pre-training
  • 相关文献

参考文献6

二级参考文献23

  • 1奥尔波特.谣言心理学[M].沈阳:辽宁教育出版社,2003.
  • 2卡普费雷.谣言:世界最古老的传媒[M].郑若麟,译.上海:上海人民出版社,2008.
  • 3拉扎斯菲尔德.人民的选择[M].唐茜,译.北京:中国人民大学出版社,2012:139-150.
  • 4CNNIC.中国互联网络发展状况统计报告(2015年1月)[R].北京:中国互联网信息中心,2015.
  • 5Qazvinian V, Rosengren E, Radev D R, et al. Rumor has it: identi- fying misinformation in microblogs [ C ]//Proc of Conference on Em- pirical Methods in Natural Language Processing. [ S. t. ] : Association for Computational Linguistics, 2011: 1589-1599.
  • 6Castillo C, Mendoza M, Poblete B. Information credibility on twitter [ C]//Proc of the 20th International Conference on World Wide Web. New York:ACM Press, 2011: 675-684.
  • 7Takahashi T, Igata N. Rumor detection on twitter [ C ]//Proc of the 13th Intet~aational Symposium on Advanced Intelligent Systems, and the Joint 6th International Conference on Soft Computing and Intelli- gent Systems. [ S. 1. ] :IEEE Press, 2012: 452-457.
  • 8Yang Fan, Liu Yang, Yu Xiaohui, et al. Automatic detection of ru- mor on Sina Weibo[ C]//Proc of ACM SIGKDD Workshop on Mining Data Semantics. New York:ACM Press, 2012: 13.
  • 9Sun Shengyun, Liu Hongyan, He Jun, et al. Detecting event rumors on Sina Weibo automatically [ M ]//Web Technologies and Applica- tions. Berlin:Springer, 2013.. 120-131.
  • 10Mikolov T, Chen Kai, Con'ado G, et al. Efficient estimation of word representations in vector space [ C ]//Proc of International Conference on Learning Representations. 2013.

共引文献91

同被引文献17

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部